| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcld.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | ptcld.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 3 |  | ptcld.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 ) | 
						
							| 5 | 4 | cldss | ⊢ ( 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) )  →  𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 8 |  | boxriin | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  →  X 𝑘  ∈  𝐴 𝐶  =  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐴 𝐶  =  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( ∏t ‘ 𝐹 )  =  ( ∏t ‘ 𝐹 ) | 
						
							| 11 | 10 | ptuni | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 12 | 1 2 11 | syl2anc | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 13 | 12 | ineq1d | ⊢ ( 𝜑  →  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ∪  ( ∏t ‘ 𝐹 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 14 |  | pttop | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 16 |  | sseq1 | ⊢ ( 𝐶  =  if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  ↔  if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 17 |  | sseq1 | ⊢ ( ∪  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( ∪  ( 𝐹 ‘ 𝑘 )  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  ↔  if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  ∧  𝑘  =  𝑥 )  →  𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 19 |  | ssidd | ⊢ ( ( 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  ∧  ¬  𝑘  =  𝑥 )  →  ∪  ( 𝐹 ‘ 𝑘 )  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 20 | 16 17 18 19 | ifbothda | ⊢ ( 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  →  if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 21 | 20 | ralimi | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  →  ∀ 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 22 |  | ss2ixp | ⊢ ( ∀ 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( 𝐹 ‘ 𝑘 )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 23 | 7 21 22 | 3syl | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 25 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 26 | 24 25 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 27 | 12 | eqcomd | ⊢ ( 𝜑  →  ∪  ( ∏t ‘ 𝐹 )  =  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 28 | 27 | difeq1d | ⊢ ( 𝜑  →  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  =  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  =  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 31 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑘  ∈  𝐴 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 32 |  | boxcutc | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 𝐶  ⊆  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  =  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 33 | 30 31 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  =  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 34 |  | ixpeq2 | ⊢ ( ∀ 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  =  if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  𝑥  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 36 | 35 | unieqd | ⊢ ( 𝑘  =  𝑥  →  ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 37 |  | csbeq1a | ⊢ ( 𝑘  =  𝑥  →  𝐶  =  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) | 
						
							| 38 | 36 37 | difeq12d | ⊢ ( 𝑘  =  𝑥  →  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 )  =  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑘  ∈  𝐴  ∧  𝑘  =  𝑥 )  →  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 )  =  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 40 | 39 | ifeq1da | ⊢ ( 𝑘  ∈  𝐴  →  if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  =  if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 41 | 34 40 | mprg | ⊢ X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑘 )  ∖  𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 43 | 29 33 42 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  =  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 44 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ∈  𝑉 ) | 
						
							| 45 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 46 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 47 |  | nfv | ⊢ Ⅎ 𝑥 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 48 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥  /  𝑘 ⦌ 𝐶 | 
						
							| 49 | 48 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑥  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 50 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑥  →  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 51 | 37 50 | eleq12d | ⊢ ( 𝑘  =  𝑥  →  ( 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) )  ↔  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 52 | 47 49 51 | cbvralw | ⊢ ( ∀ 𝑘  ∈  𝐴 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) )  ↔  ∀ 𝑥  ∈  𝐴 ⦋ 𝑥  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 53 | 46 52 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ⦋ 𝑥  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 54 | 53 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ⦋ 𝑥  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 55 |  | eqid | ⊢ ∪  ( 𝐹 ‘ 𝑥 )  =  ∪  ( 𝐹 ‘ 𝑥 ) | 
						
							| 56 | 55 | cldopn | ⊢ ( ⦋ 𝑥  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) )  →  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 )  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 57 | 54 56 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 )  ∈  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 58 | 44 45 57 | ptopn2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  ( ∪  ( 𝐹 ‘ 𝑥 )  ∖  ⦋ 𝑥  /  𝑘 ⦌ 𝐶 ) ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( ∏t ‘ 𝐹 ) ) | 
						
							| 59 | 43 58 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( ∏t ‘ 𝐹 ) ) | 
						
							| 60 |  | eqid | ⊢ ∪  ( ∏t ‘ 𝐹 )  =  ∪  ( ∏t ‘ 𝐹 ) | 
						
							| 61 | 60 | iscld | ⊢ ( ( ∏t ‘ 𝐹 )  ∈  Top  →  ( X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) )  ↔  ( X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( ∏t ‘ 𝐹 )  ∧  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( ∏t ‘ 𝐹 ) ) ) ) | 
						
							| 62 | 15 61 | syl | ⊢ ( 𝜑  →  ( X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) )  ↔  ( X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( ∏t ‘ 𝐹 )  ∧  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( ∏t ‘ 𝐹 ) ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) )  ↔  ( X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ⊆  ∪  ( ∏t ‘ 𝐹 )  ∧  ( ∪  ( ∏t ‘ 𝐹 )  ∖  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( ∏t ‘ 𝐹 ) ) ) ) | 
						
							| 64 | 26 59 63 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) | 
						
							| 65 | 64 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) | 
						
							| 66 | 60 | riincld | ⊢ ( ( ( ∏t ‘ 𝐹 )  ∈  Top  ∧  ∀ 𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) )  →  ( ∪  ( ∏t ‘ 𝐹 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) | 
						
							| 67 | 15 65 66 | syl2anc | ⊢ ( 𝜑  →  ( ∪  ( ∏t ‘ 𝐹 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) | 
						
							| 68 | 13 67 | eqeltrd | ⊢ ( 𝜑  →  ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∩  ∩  𝑥  ∈  𝐴 X 𝑘  ∈  𝐴 if ( 𝑘  =  𝑥 ,  𝐶 ,  ∪  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) | 
						
							| 69 | 9 68 | eqeltrd | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐴 𝐶  ∈  ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |