| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcldmpt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | ptcldmpt.j | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐽  ∈  Top ) | 
						
							| 3 |  | ptcldmpt.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑙 𝐶 | 
						
							| 5 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑙  /  𝑘 ⦌ 𝐶 | 
						
							| 6 |  | csbeq1a | ⊢ ( 𝑘  =  𝑙  →  𝐶  =  ⦋ 𝑙  /  𝑘 ⦌ 𝐶 ) | 
						
							| 7 | 4 5 6 | cbvixp | ⊢ X 𝑘  ∈  𝐴 𝐶  =  X 𝑙  ∈  𝐴 ⦋ 𝑙  /  𝑘 ⦌ 𝐶 | 
						
							| 8 | 2 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐽 ) : 𝐴 ⟶ Top ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑙  ∈  𝐴 ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑘 Clsd | 
						
							| 11 |  | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) | 
						
							| 12 | 10 11 | nffv | ⊢ Ⅎ 𝑘 ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) | 
						
							| 13 | 5 12 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑙  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) | 
						
							| 14 | 9 13 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑙  ∈  𝐴 )  →  ⦋ 𝑙  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) ) | 
						
							| 15 |  | eleq1w | ⊢ ( 𝑘  =  𝑙  →  ( 𝑘  ∈  𝐴  ↔  𝑙  ∈  𝐴 ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑙  ∈  𝐴 ) ) ) | 
						
							| 17 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑙  →  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 ) )  =  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) ) | 
						
							| 18 | 6 17 | eleq12d | ⊢ ( 𝑘  =  𝑙  →  ( 𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 ) )  ↔  ⦋ 𝑙  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑘  =  𝑙  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 ) ) )  ↔  ( ( 𝜑  ∧  𝑙  ∈  𝐴 )  →  ⦋ 𝑙  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) ) ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝐴 ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝐽 )  =  ( 𝑘  ∈  𝐴  ↦  𝐽 ) | 
						
							| 22 | 21 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝐴  ∧  𝐽  ∈  Top )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 )  =  𝐽 ) | 
						
							| 23 | 20 2 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 )  =  𝐽 ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 ) )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 25 | 3 24 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑘 ) ) ) | 
						
							| 26 | 14 19 25 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐴 )  →  ⦋ 𝑙  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( ( 𝑘  ∈  𝐴  ↦  𝐽 ) ‘ 𝑙 ) ) ) | 
						
							| 27 | 1 8 26 | ptcld | ⊢ ( 𝜑  →  X 𝑙  ∈  𝐴 ⦋ 𝑙  /  𝑘 ⦌ 𝐶  ∈  ( Clsd ‘ ( ∏t ‘ ( 𝑘  ∈  𝐴  ↦  𝐽 ) ) ) ) | 
						
							| 28 | 7 27 | eqeltrid | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐴 𝐶  ∈  ( Clsd ‘ ( ∏t ‘ ( 𝑘  ∈  𝐴  ↦  𝐽 ) ) ) ) |