Metamath Proof Explorer


Theorem ptcls

Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses ptcls.2 𝐽 = ( ∏t ‘ ( 𝑘𝐴𝑅 ) )
ptcls.a ( 𝜑𝐴𝑉 )
ptcls.j ( ( 𝜑𝑘𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
ptcls.c ( ( 𝜑𝑘𝐴 ) → 𝑆𝑋 )
Assertion ptcls ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘𝐴 𝑆 ) = X 𝑘𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ptcls.2 𝐽 = ( ∏t ‘ ( 𝑘𝐴𝑅 ) )
2 ptcls.a ( 𝜑𝐴𝑉 )
3 ptcls.j ( ( 𝜑𝑘𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
4 ptcls.c ( ( 𝜑𝑘𝐴 ) → 𝑆𝑋 )
5 toponmax ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋𝑅 )
6 3 5 syl ( ( 𝜑𝑘𝐴 ) → 𝑋𝑅 )
7 6 4 ssexd ( ( 𝜑𝑘𝐴 ) → 𝑆 ∈ V )
8 7 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝑆 ∈ V )
9 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝑆 ∈ V ) → 𝑘𝐴 𝑆 ∈ V )
10 2 8 9 syl2anc ( 𝜑 𝑘𝐴 𝑆 ∈ V )
11 axac3 CHOICE
12 acacni ( ( CHOICE𝐴𝑉 ) → AC 𝐴 = V )
13 11 2 12 sylancr ( 𝜑AC 𝐴 = V )
14 10 13 eleqtrrd ( 𝜑 𝑘𝐴 𝑆AC 𝐴 )
15 1 2 3 4 14 ptclsg ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘𝐴 𝑆 ) = X 𝑘𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) )