Step |
Hyp |
Ref |
Expression |
1 |
|
ptcls.2 |
⊢ 𝐽 = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) |
2 |
|
ptcls.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
ptcls.j |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
ptcls.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ 𝑋 ) |
5 |
|
toponmax |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) |
6 |
3 5
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝑅 ) |
7 |
6 4
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ∈ V ) |
8 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
9 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝑆 ∈ V ) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
10 |
2 8 9
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V ) |
11 |
|
axac3 |
⊢ CHOICE |
12 |
|
acacni |
⊢ ( ( CHOICE ∧ 𝐴 ∈ 𝑉 ) → AC 𝐴 = V ) |
13 |
11 2 12
|
sylancr |
⊢ ( 𝜑 → AC 𝐴 = V ) |
14 |
10 13
|
eleqtrrd |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) |
15 |
1 2 3 4 14
|
ptclsg |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |