| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcls.2 |
⊢ 𝐽 = ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) |
| 2 |
|
ptcls.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
ptcls.j |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
ptcls.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ 𝑋 ) |
| 5 |
|
ptclsg.1 |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) |
| 6 |
|
topontop |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ Top ) |
| 7 |
3 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑅 ∈ Top ) |
| 8 |
|
toponuni |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑅 ) |
| 9 |
3 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 = ∪ 𝑅 ) |
| 10 |
4 9
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ ∪ 𝑅 ) |
| 11 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 12 |
11
|
clscld |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 13 |
7 10 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 14 |
2 7 13
|
ptcldmpt |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) ) ) |
| 15 |
1
|
fveq2i |
⊢ ( Clsd ‘ 𝐽 ) = ( Clsd ‘ ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) ) |
| 16 |
14 15
|
eleqtrrdi |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 17 |
11
|
sscls |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 18 |
7 10 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 19 |
18
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 20 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 22 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 23 |
22
|
clsss2 |
⊢ ( ( X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 24 |
16 21 23
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 25 |
|
vex |
⊢ 𝑢 ∈ V |
| 26 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
| 27 |
26
|
anbi2d |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 28 |
27
|
exbidv |
⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) |
| 29 |
25 28
|
elab |
⊢ ( 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
| 30 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) |
| 31 |
30
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) |
| 33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ) |
| 35 |
33 34
|
eleq12d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ) ) |
| 36 |
31 32 35
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
| 38 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) |
| 39 |
38
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) = 𝑅 ) |
| 40 |
37 3 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) = 𝑅 ) |
| 41 |
40
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 42 |
41
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 43 |
36 42
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 44 |
43
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) ) |
| 46 |
45
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) |
| 47 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ) |
| 48 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → 𝜑 ) |
| 49 |
|
vex |
⊢ 𝑓 ∈ V |
| 50 |
49
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ) |
| 51 |
50
|
simprbi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 52 |
51
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 53 |
11
|
clsndisj |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 54 |
53
|
ex |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 55 |
54
|
3expia |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 56 |
7 10 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 57 |
56
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) → ∀ 𝑘 ∈ 𝐴 ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 58 |
48 52 57
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 59 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) |
| 60 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 61 |
33
|
cbvixpv |
⊢ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) |
| 62 |
60 61
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑓 ∈ X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ) |
| 63 |
49
|
elixp |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) |
| 64 |
63
|
simprbi |
⊢ ( 𝑓 ∈ X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) |
| 65 |
62 64
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) |
| 66 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ↔ ( ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) |
| 67 |
59 65 66
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) ) |
| 68 |
|
ralim |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑔 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 69 |
58 67 68
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 70 |
|
rabn0 |
⊢ ( { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } ≠ ∅ ↔ ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 71 |
|
dfin5 |
⊢ ( ∪ 𝑘 ∈ 𝐴 𝑆 ∩ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) = { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } |
| 72 |
|
inss2 |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ 𝑆 |
| 73 |
|
ssiun2 |
⊢ ( 𝑘 ∈ 𝐴 → 𝑆 ⊆ ∪ 𝑘 ∈ 𝐴 𝑆 ) |
| 74 |
72 73
|
sstrid |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ 𝑘 ∈ 𝐴 𝑆 ) |
| 75 |
|
sseqin2 |
⊢ ( ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ⊆ ∪ 𝑘 ∈ 𝐴 𝑆 ↔ ( ∪ 𝑘 ∈ 𝐴 𝑆 ∩ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) = ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 76 |
74 75
|
sylib |
⊢ ( 𝑘 ∈ 𝐴 → ( ∪ 𝑘 ∈ 𝐴 𝑆 ∩ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) = ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 77 |
71 76
|
eqtr3id |
⊢ ( 𝑘 ∈ 𝐴 → { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } = ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 78 |
77
|
neeq1d |
⊢ ( 𝑘 ∈ 𝐴 → ( { 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 ∣ 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) } ≠ ∅ ↔ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 79 |
70 78
|
bitr3id |
⊢ ( 𝑘 ∈ 𝐴 → ( ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 80 |
79
|
ralbiia |
⊢ ( ∀ 𝑘 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∀ 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 81 |
69 80
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) |
| 82 |
|
nfv |
⊢ Ⅎ 𝑦 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) |
| 83 |
|
nfiu1 |
⊢ Ⅎ 𝑘 ∪ 𝑘 ∈ 𝐴 𝑆 |
| 84 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑦 ) |
| 85 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝑆 |
| 86 |
84 85
|
nfin |
⊢ Ⅎ 𝑘 ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 87 |
86
|
nfel2 |
⊢ Ⅎ 𝑘 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 88 |
83 87
|
nfrexw |
⊢ Ⅎ 𝑘 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 89 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑦 ) ) |
| 90 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝑆 = ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 91 |
89 90
|
ineq12d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) = ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 92 |
91
|
eleq2d |
⊢ ( 𝑘 = 𝑦 → ( 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 93 |
92
|
rexbidv |
⊢ ( 𝑘 = 𝑦 → ( ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 94 |
82 88 93
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 95 |
81 94
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 96 |
|
eleq1 |
⊢ ( 𝑧 = ( ℎ ‘ 𝑦 ) → ( 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ↔ ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 97 |
96
|
acni3 |
⊢ ( ( ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ∪ 𝑘 ∈ 𝐴 𝑆 𝑧 ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ∃ ℎ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 98 |
47 95 97
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ∃ ℎ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 99 |
|
ffn |
⊢ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 → ℎ Fn 𝐴 ) |
| 100 |
|
nfv |
⊢ Ⅎ 𝑦 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) |
| 101 |
86
|
nfel2 |
⊢ Ⅎ 𝑘 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) |
| 102 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( ℎ ‘ 𝑘 ) = ( ℎ ‘ 𝑦 ) ) |
| 103 |
102 91
|
eleq12d |
⊢ ( 𝑘 = 𝑦 → ( ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) ) |
| 104 |
100 101 103
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) |
| 105 |
|
ne0i |
⊢ ( ℎ ∈ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) → X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ) |
| 106 |
|
vex |
⊢ ℎ ∈ V |
| 107 |
106
|
elixp |
⊢ ( ℎ ∈ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ↔ ( ℎ Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) ) |
| 108 |
|
ixpin |
⊢ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) = ( X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 109 |
61
|
ineq1i |
⊢ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( X 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 110 |
108 109
|
eqtr4i |
⊢ X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) = ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) |
| 111 |
110
|
neeq1i |
⊢ ( X 𝑘 ∈ 𝐴 ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ≠ ∅ ↔ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 112 |
105 107 111
|
3imtr3i |
⊢ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( ℎ ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∩ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 113 |
104 112
|
sylan2br |
⊢ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 114 |
99 113
|
sylan |
⊢ ( ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 115 |
114
|
exlimiv |
⊢ ( ∃ ℎ ( ℎ : 𝐴 ⟶ ∪ 𝑘 ∈ 𝐴 𝑆 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( ( 𝑔 ‘ 𝑦 ) ∩ ⦋ 𝑦 / 𝑘 ⦌ 𝑆 ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 116 |
98 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ∧ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) |
| 117 |
116
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ 𝑅 ) ) → ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 118 |
46 117
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 119 |
118
|
3adantr3 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 120 |
|
eleq2 |
⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑓 ∈ 𝑢 ↔ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
| 121 |
|
ineq1 |
⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) = ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 122 |
121
|
neeq1d |
⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ↔ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 123 |
120 122
|
imbi12d |
⊢ ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ↔ ( 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 124 |
119 123
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ) → ( 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 125 |
124
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 126 |
125
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑢 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 127 |
29 126
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } → ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 128 |
127
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ∀ 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) |
| 129 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ Top ) |
| 130 |
129
|
ffnd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) Fn 𝐴 ) |
| 131 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
| 132 |
131
|
ptval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) Fn 𝐴 ) → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 133 |
2 130 132
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 134 |
1 133
|
eqtrid |
⊢ ( 𝜑 → 𝐽 = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → 𝐽 = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 136 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 137 |
1
|
pttopon |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐴 𝑋 ) ) |
| 138 |
2 136 137
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐴 𝑋 ) ) |
| 139 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐴 𝑋 ) → X 𝑘 ∈ 𝐴 𝑋 = ∪ 𝐽 ) |
| 140 |
138 139
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑋 = ∪ 𝐽 ) |
| 141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → X 𝑘 ∈ 𝐴 𝑋 = ∪ 𝐽 ) |
| 142 |
131
|
ptbas |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 143 |
2 129 142
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 145 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ 𝑋 ) |
| 146 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝑆 ⊆ 𝑋 → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 147 |
145 146
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 148 |
147
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → X 𝑘 ∈ 𝐴 𝑆 ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 149 |
11
|
clsss3 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ ∪ 𝑅 ) |
| 150 |
7 10 149
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ ∪ 𝑅 ) |
| 151 |
150 9
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 152 |
151
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 153 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ 𝑋 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 154 |
152 153
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ⊆ X 𝑘 ∈ 𝐴 𝑋 ) |
| 155 |
154
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝐴 𝑋 ) |
| 156 |
135 141 144 148 155
|
elcls3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → ( 𝑓 ∈ ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ↔ ∀ 𝑢 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑘 ∈ 𝐴 ↦ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑓 ∈ 𝑢 → ( 𝑢 ∩ X 𝑘 ∈ 𝐴 𝑆 ) ≠ ∅ ) ) ) |
| 157 |
128 156
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) → 𝑓 ∈ ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) ) |
| 158 |
24 157
|
eqelssd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑘 ∈ 𝐴 𝑆 ) = X 𝑘 ∈ 𝐴 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |