Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( ∏t ‘ 𝐹 ) ∈ V |
2 |
1
|
uniex |
⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ V |
3 |
|
axac3 |
⊢ CHOICE |
4 |
|
acufl |
⊢ ( CHOICE → UFL = V ) |
5 |
3 4
|
ax-mp |
⊢ UFL = V |
6 |
2 5
|
eleqtrri |
⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ UFL |
7 |
|
cardeqv |
⊢ dom card = V |
8 |
2 7
|
eleqtrri |
⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ dom card |
9 |
6 8
|
elini |
⊢ ∪ ( ∏t ‘ 𝐹 ) ∈ ( UFL ∩ dom card ) |
10 |
|
eqid |
⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) |
11 |
|
eqid |
⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) |
12 |
10 11
|
ptcmpg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ∧ ∪ ( ∏t ‘ 𝐹 ) ∈ ( UFL ∩ dom card ) ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |
13 |
9 12
|
mp3an3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |