Metamath Proof Explorer


Theorem ptcmp

Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ptcmp ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Comp ) → ( ∏t𝐹 ) ∈ Comp )

Proof

Step Hyp Ref Expression
1 fvex ( ∏t𝐹 ) ∈ V
2 1 uniex ( ∏t𝐹 ) ∈ V
3 axac3 CHOICE
4 acufl ( CHOICE → UFL = V )
5 3 4 ax-mp UFL = V
6 2 5 eleqtrri ( ∏t𝐹 ) ∈ UFL
7 cardeqv dom card = V
8 2 7 eleqtrri ( ∏t𝐹 ) ∈ dom card
9 6 8 elini ( ∏t𝐹 ) ∈ ( UFL ∩ dom card )
10 eqid ( ∏t𝐹 ) = ( ∏t𝐹 )
11 eqid ( ∏t𝐹 ) = ( ∏t𝐹 )
12 10 11 ptcmpg ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Comp ∧ ( ∏t𝐹 ) ∈ ( UFL ∩ dom card ) ) → ( ∏t𝐹 ) ∈ Comp )
13 9 12 mp3an3 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Comp ) → ( ∏t𝐹 ) ∈ Comp )