Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ Comp → 𝐹 Fn 𝐴 ) |
2 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ Comp → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
5 |
4
|
fveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) = ( ∏t ‘ 𝐹 ) ) |
6 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
7 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
8 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ∅ ) ) |
9 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
10 |
8 9
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ 𝑥 ) = ∅ ) |
11 |
10
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ∅ ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ∅ ) ∈ Comp ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) ) |
14 |
7 13
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( ∅ ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) ) ) |
15 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
16 |
|
reseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝑦 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) ) |
20 |
15 19
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) ) ) |
21 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
22 |
|
reseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) |
26 |
21 25
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
27 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
28 |
|
reseq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ 𝐴 ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) ) |
32 |
27 31
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ Comp ) ) ↔ ( 𝐴 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) ) ) |
33 |
|
0ex |
⊢ ∅ ∈ V |
34 |
|
f0 |
⊢ ∅ : ∅ ⟶ Top |
35 |
|
pttop |
⊢ ( ( ∅ ∈ V ∧ ∅ : ∅ ⟶ Top ) → ( ∏t ‘ ∅ ) ∈ Top ) |
36 |
33 34 35
|
mp2an |
⊢ ( ∏t ‘ ∅ ) ∈ Top |
37 |
|
eqid |
⊢ ( ∏t ‘ ∅ ) = ( ∏t ‘ ∅ ) |
38 |
37
|
ptuni |
⊢ ( ( ∅ ∈ V ∧ ∅ : ∅ ⟶ Top ) → X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) = ∪ ( ∏t ‘ ∅ ) ) |
39 |
33 34 38
|
mp2an |
⊢ X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) = ∪ ( ∏t ‘ ∅ ) |
40 |
|
ixp0x |
⊢ X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) = { ∅ } |
41 |
|
snfi |
⊢ { ∅ } ∈ Fin |
42 |
40 41
|
eqeltri |
⊢ X 𝑥 ∈ ∅ ∪ ( ∅ ‘ 𝑥 ) ∈ Fin |
43 |
39 42
|
eqeltrri |
⊢ ∪ ( ∏t ‘ ∅ ) ∈ Fin |
44 |
|
pwfi |
⊢ ( ∪ ( ∏t ‘ ∅ ) ∈ Fin ↔ 𝒫 ∪ ( ∏t ‘ ∅ ) ∈ Fin ) |
45 |
43 44
|
mpbi |
⊢ 𝒫 ∪ ( ∏t ‘ ∅ ) ∈ Fin |
46 |
|
pwuni |
⊢ ( ∏t ‘ ∅ ) ⊆ 𝒫 ∪ ( ∏t ‘ ∅ ) |
47 |
|
ssfi |
⊢ ( ( 𝒫 ∪ ( ∏t ‘ ∅ ) ∈ Fin ∧ ( ∏t ‘ ∅ ) ⊆ 𝒫 ∪ ( ∏t ‘ ∅ ) ) → ( ∏t ‘ ∅ ) ∈ Fin ) |
48 |
45 46 47
|
mp2an |
⊢ ( ∏t ‘ ∅ ) ∈ Fin |
49 |
36 48
|
elini |
⊢ ( ∏t ‘ ∅ ) ∈ ( Top ∩ Fin ) |
50 |
|
fincmp |
⊢ ( ( ∏t ‘ ∅ ) ∈ ( Top ∩ Fin ) → ( ∏t ‘ ∅ ) ∈ Comp ) |
51 |
49 50
|
ax-mp |
⊢ ( ∏t ‘ ∅ ) ∈ Comp |
52 |
51
|
2a1i |
⊢ ( ∅ ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) |
53 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
54 |
|
id |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
55 |
53 54
|
sstrid |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑦 ⊆ 𝐴 ) |
56 |
55
|
imim1i |
⊢ ( ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) ) |
57 |
|
eqid |
⊢ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) = ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) |
58 |
|
eqid |
⊢ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) |
59 |
|
eqid |
⊢ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) |
60 |
|
resabs1 |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) ) |
61 |
53 60
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) |
62 |
61
|
eqcomi |
⊢ ( 𝐹 ↾ 𝑦 ) = ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) |
63 |
62
|
fveq2i |
⊢ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) = ( ∏t ‘ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) ) |
64 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) |
65 |
|
resabs1 |
⊢ ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) = ( 𝐹 ↾ { 𝑧 } ) ) |
66 |
64 65
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) = ( 𝐹 ↾ { 𝑧 } ) |
67 |
66
|
eqcomi |
⊢ ( 𝐹 ↾ { 𝑧 } ) = ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) |
68 |
67
|
fveq2i |
⊢ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) ) |
69 |
|
eqid |
⊢ ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) = ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) |
70 |
|
vex |
⊢ 𝑦 ∈ V |
71 |
|
snex |
⊢ { 𝑧 } ∈ V |
72 |
70 71
|
unex |
⊢ ( 𝑦 ∪ { 𝑧 } ) ∈ V |
73 |
72
|
a1i |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ V ) |
74 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ Comp ) |
75 |
|
cmptop |
⊢ ( 𝑥 ∈ Comp → 𝑥 ∈ Top ) |
76 |
75
|
ssriv |
⊢ Comp ⊆ Top |
77 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ Comp ∧ Comp ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top ) |
78 |
74 76 77
|
sylancl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ Top ) |
79 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
80 |
78 79
|
fssresd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ) |
81 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
82 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
83 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
84 |
82 83
|
sylibr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
85 |
57 58 59 63 68 69 73 80 81 84
|
ptunhmeo |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) ∈ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
86 |
|
hmphi |
⊢ ( ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) , 𝑣 ∈ ∪ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢 ∪ 𝑣 ) ) ∈ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
87 |
85 86
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
88 |
1
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
89 |
64 79
|
sstrid |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → { 𝑧 } ⊆ 𝐴 ) |
90 |
|
vex |
⊢ 𝑧 ∈ V |
91 |
90
|
snss |
⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
92 |
89 91
|
sylibr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
93 |
|
fnressn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑧 } ) = { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
94 |
88 92 93
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ↾ { 𝑧 } ) = { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
95 |
94
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) |
96 |
|
eqid |
⊢ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) = ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
97 |
90
|
a1i |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ V ) |
98 |
74 92
|
ffvelrnd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ Comp ) |
99 |
76 98
|
sselid |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ Top ) |
100 |
|
toptopon2 |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ Top ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑧 ) ) ) |
101 |
99 100
|
sylib |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑧 ) ) ) |
102 |
96 97 101
|
pt1hmeo |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑧 ) ↦ { 〈 𝑧 , 𝑥 〉 } ) ∈ ( ( 𝐹 ‘ 𝑧 ) Homeo ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) ) |
103 |
|
hmphi |
⊢ ( ( 𝑥 ∈ ∪ ( 𝐹 ‘ 𝑧 ) ↦ { 〈 𝑧 , 𝑥 〉 } ) ∈ ( ( 𝐹 ‘ 𝑧 ) Homeo ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) → ( 𝐹 ‘ 𝑧 ) ≃ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) |
104 |
102 103
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ≃ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ) |
105 |
|
cmphmph |
⊢ ( ( 𝐹 ‘ 𝑧 ) ≃ ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) → ( ( 𝐹 ‘ 𝑧 ) ∈ Comp → ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ∈ Comp ) ) |
106 |
104 98 105
|
sylc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) ∈ Comp ) |
107 |
95 106
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp ) |
108 |
|
txcmp |
⊢ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ∧ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) |
109 |
108
|
expcom |
⊢ ( ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) ) |
110 |
107 109
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) ) |
111 |
|
cmphmph |
⊢ ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) → ( ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) |
112 |
87 110 111
|
sylsyld |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) |
113 |
112
|
expcom |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) |
114 |
113
|
a2d |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) |
115 |
114
|
ex |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
116 |
115
|
a2d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
117 |
56 116
|
syl5 |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
118 |
117
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) ) |
119 |
14 20 26 32 52 118
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) ) |
120 |
6 119
|
mpi |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) ) |
121 |
120
|
anabsi5 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) |
122 |
5 121
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ 𝐹 ) ∈ Comp ) |