| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Comp  →  𝐹  Fn  𝐴 ) | 
						
							| 2 |  | fnresdm | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝐹  ↾  𝐴 )  =  𝐹 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ Comp  →  ( 𝐹  ↾  𝐴 )  =  𝐹 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( 𝐹  ↾  𝐴 )  =  𝐹 ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  =  ( ∏t ‘ 𝐹 ) ) | 
						
							| 6 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 7 |  | sseq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ⊆  𝐴  ↔  ∅  ⊆  𝐴 ) ) | 
						
							| 8 |  | reseq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐹  ↾  𝑥 )  =  ( 𝐹  ↾  ∅ ) ) | 
						
							| 9 |  | res0 | ⊢ ( 𝐹  ↾  ∅ )  =  ∅ | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( 𝐹  ↾  𝑥 )  =  ∅ ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑥  =  ∅  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  =  ( ∏t ‘ ∅ ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑥  =  ∅  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp  ↔  ( ∏t ‘ ∅ )  ∈  Comp ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑥  =  ∅  →  ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp )  ↔  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ∅ )  ∈  Comp ) ) ) | 
						
							| 14 | 7 13 | imbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp ) )  ↔  ( ∅  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ∅ )  ∈  Comp ) ) ) ) | 
						
							| 15 |  | sseq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  𝐴  ↔  𝑦  ⊆  𝐴 ) ) | 
						
							| 16 |  | reseq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹  ↾  𝑥 )  =  ( 𝐹  ↾  𝑦 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  =  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp  ↔  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp )  ↔  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) ) ) | 
						
							| 20 | 15 19 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp ) )  ↔  ( 𝑦  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) ) ) ) | 
						
							| 21 |  | sseq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝑥  ⊆  𝐴  ↔  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) ) | 
						
							| 22 |  | reseq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝐹  ↾  𝑥 )  =  ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  =  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp  ↔  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp )  ↔  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) | 
						
							| 26 | 21 25 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝑥  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp ) )  ↔  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) ) | 
						
							| 27 |  | sseq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊆  𝐴  ↔  𝐴  ⊆  𝐴 ) ) | 
						
							| 28 |  | reseq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹  ↾  𝑥 )  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  =  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp  ↔  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Comp ) ) | 
						
							| 31 | 30 | imbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp )  ↔  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Comp ) ) ) | 
						
							| 32 | 27 31 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑥 ) )  ∈  Comp ) )  ↔  ( 𝐴  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Comp ) ) ) ) | 
						
							| 33 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 34 |  | f0 | ⊢ ∅ : ∅ ⟶ Top | 
						
							| 35 |  | pttop | ⊢ ( ( ∅  ∈  V  ∧  ∅ : ∅ ⟶ Top )  →  ( ∏t ‘ ∅ )  ∈  Top ) | 
						
							| 36 | 33 34 35 | mp2an | ⊢ ( ∏t ‘ ∅ )  ∈  Top | 
						
							| 37 |  | eqid | ⊢ ( ∏t ‘ ∅ )  =  ( ∏t ‘ ∅ ) | 
						
							| 38 | 37 | ptuni | ⊢ ( ( ∅  ∈  V  ∧  ∅ : ∅ ⟶ Top )  →  X 𝑥  ∈  ∅ ∪  ( ∅ ‘ 𝑥 )  =  ∪  ( ∏t ‘ ∅ ) ) | 
						
							| 39 | 33 34 38 | mp2an | ⊢ X 𝑥  ∈  ∅ ∪  ( ∅ ‘ 𝑥 )  =  ∪  ( ∏t ‘ ∅ ) | 
						
							| 40 |  | ixp0x | ⊢ X 𝑥  ∈  ∅ ∪  ( ∅ ‘ 𝑥 )  =  { ∅ } | 
						
							| 41 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 42 | 40 41 | eqeltri | ⊢ X 𝑥  ∈  ∅ ∪  ( ∅ ‘ 𝑥 )  ∈  Fin | 
						
							| 43 | 39 42 | eqeltrri | ⊢ ∪  ( ∏t ‘ ∅ )  ∈  Fin | 
						
							| 44 |  | pwfi | ⊢ ( ∪  ( ∏t ‘ ∅ )  ∈  Fin  ↔  𝒫  ∪  ( ∏t ‘ ∅ )  ∈  Fin ) | 
						
							| 45 | 43 44 | mpbi | ⊢ 𝒫  ∪  ( ∏t ‘ ∅ )  ∈  Fin | 
						
							| 46 |  | pwuni | ⊢ ( ∏t ‘ ∅ )  ⊆  𝒫  ∪  ( ∏t ‘ ∅ ) | 
						
							| 47 |  | ssfi | ⊢ ( ( 𝒫  ∪  ( ∏t ‘ ∅ )  ∈  Fin  ∧  ( ∏t ‘ ∅ )  ⊆  𝒫  ∪  ( ∏t ‘ ∅ ) )  →  ( ∏t ‘ ∅ )  ∈  Fin ) | 
						
							| 48 | 45 46 47 | mp2an | ⊢ ( ∏t ‘ ∅ )  ∈  Fin | 
						
							| 49 | 36 48 | elini | ⊢ ( ∏t ‘ ∅ )  ∈  ( Top  ∩  Fin ) | 
						
							| 50 |  | fincmp | ⊢ ( ( ∏t ‘ ∅ )  ∈  ( Top  ∩  Fin )  →  ( ∏t ‘ ∅ )  ∈  Comp ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ ( ∏t ‘ ∅ )  ∈  Comp | 
						
							| 52 | 51 | 2a1i | ⊢ ( ∅  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ∅ )  ∈  Comp ) ) | 
						
							| 53 |  | ssun1 | ⊢ 𝑦  ⊆  ( 𝑦  ∪  { 𝑧 } ) | 
						
							| 54 |  | id | ⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 55 | 53 54 | sstrid | ⊢ ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑦  ⊆  𝐴 ) | 
						
							| 56 | 55 | imim1i | ⊢ ( ( 𝑦  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) )  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) ) ) | 
						
							| 57 |  | eqid | ⊢ ∪  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  =  ∪  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) ) | 
						
							| 58 |  | eqid | ⊢ ∪  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  =  ∪  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) | 
						
							| 59 |  | eqid | ⊢ ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 60 |  | resabs1 | ⊢ ( 𝑦  ⊆  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  𝑦 )  =  ( 𝐹  ↾  𝑦 ) ) | 
						
							| 61 | 53 60 | ax-mp | ⊢ ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  𝑦 )  =  ( 𝐹  ↾  𝑦 ) | 
						
							| 62 | 61 | eqcomi | ⊢ ( 𝐹  ↾  𝑦 )  =  ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  𝑦 ) | 
						
							| 63 | 62 | fveq2i | ⊢ ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  =  ( ∏t ‘ ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  𝑦 ) ) | 
						
							| 64 |  | ssun2 | ⊢ { 𝑧 }  ⊆  ( 𝑦  ∪  { 𝑧 } ) | 
						
							| 65 |  | resabs1 | ⊢ ( { 𝑧 }  ⊆  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  { 𝑧 } )  =  ( 𝐹  ↾  { 𝑧 } ) ) | 
						
							| 66 | 64 65 | ax-mp | ⊢ ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  { 𝑧 } )  =  ( 𝐹  ↾  { 𝑧 } ) | 
						
							| 67 | 66 | eqcomi | ⊢ ( 𝐹  ↾  { 𝑧 } )  =  ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  { 𝑧 } ) | 
						
							| 68 | 67 | fveq2i | ⊢ ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  =  ( ∏t ‘ ( ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) )  ↾  { 𝑧 } ) ) | 
						
							| 69 |  | eqid | ⊢ ( 𝑢  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) ) ,  𝑣  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ↦  ( 𝑢  ∪  𝑣 ) )  =  ( 𝑢  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) ) ,  𝑣  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ↦  ( 𝑢  ∪  𝑣 ) ) | 
						
							| 70 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 71 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 72 | 70 71 | unex | ⊢ ( 𝑦  ∪  { 𝑧 } )  ∈  V | 
						
							| 73 | 72 | a1i | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑦  ∪  { 𝑧 } )  ∈  V ) | 
						
							| 74 |  | simplr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝐹 : 𝐴 ⟶ Comp ) | 
						
							| 75 |  | cmptop | ⊢ ( 𝑥  ∈  Comp  →  𝑥  ∈  Top ) | 
						
							| 76 | 75 | ssriv | ⊢ Comp  ⊆  Top | 
						
							| 77 |  | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ Comp  ∧  Comp  ⊆  Top )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 78 | 74 76 77 | sylancl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 79 |  | simprr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 80 | 78 79 | fssresd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) : ( 𝑦  ∪  { 𝑧 } ) ⟶ Top ) | 
						
							| 81 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑦  ∪  { 𝑧 } )  =  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 82 |  | simprl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 83 |  | disjsn | ⊢ ( ( 𝑦  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝑦 ) | 
						
							| 84 | 82 83 | sylibr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑦  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 85 | 57 58 59 63 68 69 73 80 81 84 | ptunhmeo | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑢  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) ) ,  𝑣  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ↦  ( 𝑢  ∪  𝑣 ) )  ∈  ( ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) ) ) | 
						
							| 86 |  | hmphi | ⊢ ( ( 𝑢  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) ) ,  𝑣  ∈  ∪  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ↦  ( 𝑢  ∪  𝑣 ) )  ∈  ( ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ≃  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ≃  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 88 | 1 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 89 | 64 79 | sstrid | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 90 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 91 | 90 | snss | ⊢ ( 𝑧  ∈  𝐴  ↔  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 92 | 89 91 | sylibr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 93 |  | fnressn | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹  ↾  { 𝑧 } )  =  { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) | 
						
							| 94 | 88 92 93 | syl2anc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐹  ↾  { 𝑧 } )  =  { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) | 
						
							| 95 | 94 | fveq2d | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  =  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) ) | 
						
							| 96 |  | eqid | ⊢ ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } )  =  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) | 
						
							| 97 | 90 | a1i | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  V ) | 
						
							| 98 | 74 92 | ffvelcdmd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  Comp ) | 
						
							| 99 | 76 98 | sselid | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  Top ) | 
						
							| 100 |  | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  Top  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 101 | 99 100 | sylib | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 102 | 96 97 101 | pt1hmeo | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑥  ∈  ∪  ( 𝐹 ‘ 𝑧 )  ↦  { 〈 𝑧 ,  𝑥 〉 } )  ∈  ( ( 𝐹 ‘ 𝑧 ) Homeo ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) ) ) | 
						
							| 103 |  | hmphi | ⊢ ( ( 𝑥  ∈  ∪  ( 𝐹 ‘ 𝑧 )  ↦  { 〈 𝑧 ,  𝑥 〉 } )  ∈  ( ( 𝐹 ‘ 𝑧 ) Homeo ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) )  →  ( 𝐹 ‘ 𝑧 )  ≃  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐹 ‘ 𝑧 )  ≃  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } ) ) | 
						
							| 105 |  | cmphmph | ⊢ ( ( 𝐹 ‘ 𝑧 )  ≃  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  Comp  →  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } )  ∈  Comp ) ) | 
						
							| 106 | 104 98 105 | sylc | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ∏t ‘ { 〈 𝑧 ,  ( 𝐹 ‘ 𝑧 ) 〉 } )  ∈  Comp ) | 
						
							| 107 | 95 106 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ∈  Comp ) | 
						
							| 108 |  | txcmp | ⊢ ( ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp  ∧  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ∈  Comp )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ∈  Comp ) | 
						
							| 109 | 108 | expcom | ⊢ ( ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) )  ∈  Comp  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ∈  Comp ) ) | 
						
							| 110 | 107 109 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ∈  Comp ) ) | 
						
							| 111 |  | cmphmph | ⊢ ( ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ≃  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  →  ( ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ×t  ( ∏t ‘ ( 𝐹  ↾  { 𝑧 } ) ) )  ∈  Comp  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) | 
						
							| 112 | 87 110 111 | sylsyld | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  ∧  ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) | 
						
							| 113 | 112 | expcom | ⊢ ( ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) | 
						
							| 114 | 113 | a2d | ⊢ ( ( ¬  𝑧  ∈  𝑦  ∧  ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp )  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) | 
						
							| 115 | 114 | ex | ⊢ ( ¬  𝑧  ∈  𝑦  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp )  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) ) | 
						
							| 116 | 115 | a2d | ⊢ ( ¬  𝑧  ∈  𝑦  →  ( ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) )  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) ) | 
						
							| 117 | 56 116 | syl5 | ⊢ ( ¬  𝑧  ∈  𝑦  →  ( ( 𝑦  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) )  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( 𝑦  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝑦 ) )  ∈  Comp ) )  →  ( ( 𝑦  ∪  { 𝑧 } )  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  ( 𝑦  ∪  { 𝑧 } ) ) )  ∈  Comp ) ) ) ) | 
						
							| 119 | 14 20 26 32 52 118 | findcard2s | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ⊆  𝐴  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Comp ) ) ) | 
						
							| 120 | 6 119 | mpi | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Comp ) ) | 
						
							| 121 | 120 | anabsi5 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Comp ) | 
						
							| 122 | 5 121 | eqeltrrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐹 : 𝐴 ⟶ Comp )  →  ( ∏t ‘ 𝐹 )  ∈  Comp ) |