Metamath Proof Explorer


Theorem ptcmpfi

Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion ptcmpfi ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t𝐹 ) ∈ Comp )

Proof

Step Hyp Ref Expression
1 ffn ( 𝐹 : 𝐴 ⟶ Comp → 𝐹 Fn 𝐴 )
2 fnresdm ( 𝐹 Fn 𝐴 → ( 𝐹𝐴 ) = 𝐹 )
3 1 2 syl ( 𝐹 : 𝐴 ⟶ Comp → ( 𝐹𝐴 ) = 𝐹 )
4 3 adantl ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( 𝐹𝐴 ) = 𝐹 )
5 4 fveq2d ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝐴 ) ) = ( ∏t𝐹 ) )
6 ssid 𝐴𝐴
7 sseq1 ( 𝑥 = ∅ → ( 𝑥𝐴 ↔ ∅ ⊆ 𝐴 ) )
8 reseq2 ( 𝑥 = ∅ → ( 𝐹𝑥 ) = ( 𝐹 ↾ ∅ ) )
9 res0 ( 𝐹 ↾ ∅ ) = ∅
10 8 9 eqtrdi ( 𝑥 = ∅ → ( 𝐹𝑥 ) = ∅ )
11 10 fveq2d ( 𝑥 = ∅ → ( ∏t ‘ ( 𝐹𝑥 ) ) = ( ∏t ‘ ∅ ) )
12 11 eleq1d ( 𝑥 = ∅ → ( ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ∅ ) ∈ Comp ) )
13 12 imbi2d ( 𝑥 = ∅ → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) )
14 7 13 imbi12d ( 𝑥 = ∅ → ( ( 𝑥𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ) ↔ ( ∅ ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) ) ) )
15 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
16 reseq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
17 16 fveq2d ( 𝑥 = 𝑦 → ( ∏t ‘ ( 𝐹𝑥 ) ) = ( ∏t ‘ ( 𝐹𝑦 ) ) )
18 17 eleq1d ( 𝑥 = 𝑦 → ( ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) )
19 18 imbi2d ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) )
20 15 19 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ) ↔ ( 𝑦𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) ) )
21 sseq1 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) )
22 reseq2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹𝑥 ) = ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) )
23 22 fveq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏t ‘ ( 𝐹𝑥 ) ) = ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
24 23 eleq1d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) )
25 24 imbi2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) )
26 21 25 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) )
27 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝐴𝐴𝐴 ) )
28 reseq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
29 28 fveq2d ( 𝑥 = 𝐴 → ( ∏t ‘ ( 𝐹𝑥 ) ) = ( ∏t ‘ ( 𝐹𝐴 ) ) )
30 29 eleq1d ( 𝑥 = 𝐴 → ( ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ↔ ( ∏t ‘ ( 𝐹𝐴 ) ) ∈ Comp ) )
31 30 imbi2d ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ↔ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝐴 ) ) ∈ Comp ) ) )
32 27 31 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑥 ) ) ∈ Comp ) ) ↔ ( 𝐴𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝐴 ) ) ∈ Comp ) ) ) )
33 0ex ∅ ∈ V
34 f0 ∅ : ∅ ⟶ Top
35 pttop ( ( ∅ ∈ V ∧ ∅ : ∅ ⟶ Top ) → ( ∏t ‘ ∅ ) ∈ Top )
36 33 34 35 mp2an ( ∏t ‘ ∅ ) ∈ Top
37 eqid ( ∏t ‘ ∅ ) = ( ∏t ‘ ∅ )
38 37 ptuni ( ( ∅ ∈ V ∧ ∅ : ∅ ⟶ Top ) → X 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( ∏t ‘ ∅ ) )
39 33 34 38 mp2an X 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = ( ∏t ‘ ∅ )
40 ixp0x X 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) = { ∅ }
41 snfi { ∅ } ∈ Fin
42 40 41 eqeltri X 𝑥 ∈ ∅ ( ∅ ‘ 𝑥 ) ∈ Fin
43 39 42 eqeltrri ( ∏t ‘ ∅ ) ∈ Fin
44 pwfi ( ( ∏t ‘ ∅ ) ∈ Fin ↔ 𝒫 ( ∏t ‘ ∅ ) ∈ Fin )
45 43 44 mpbi 𝒫 ( ∏t ‘ ∅ ) ∈ Fin
46 pwuni ( ∏t ‘ ∅ ) ⊆ 𝒫 ( ∏t ‘ ∅ )
47 ssfi ( ( 𝒫 ( ∏t ‘ ∅ ) ∈ Fin ∧ ( ∏t ‘ ∅ ) ⊆ 𝒫 ( ∏t ‘ ∅ ) ) → ( ∏t ‘ ∅ ) ∈ Fin )
48 45 46 47 mp2an ( ∏t ‘ ∅ ) ∈ Fin
49 36 48 elini ( ∏t ‘ ∅ ) ∈ ( Top ∩ Fin )
50 fincmp ( ( ∏t ‘ ∅ ) ∈ ( Top ∩ Fin ) → ( ∏t ‘ ∅ ) ∈ Comp )
51 49 50 ax-mp ( ∏t ‘ ∅ ) ∈ Comp
52 51 2a1i ( ∅ ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ∅ ) ∈ Comp ) )
53 ssun1 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } )
54 id ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 )
55 53 54 sstrid ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴𝑦𝐴 )
56 55 imim1i ( ( 𝑦𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) )
57 eqid ( ∏t ‘ ( 𝐹𝑦 ) ) = ( ∏t ‘ ( 𝐹𝑦 ) )
58 eqid ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) )
59 eqid ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) )
60 resabs1 ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) = ( 𝐹𝑦 ) )
61 53 60 ax-mp ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) = ( 𝐹𝑦 )
62 61 eqcomi ( 𝐹𝑦 ) = ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 )
63 62 fveq2i ( ∏t ‘ ( 𝐹𝑦 ) ) = ( ∏t ‘ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ 𝑦 ) )
64 ssun2 { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } )
65 resabs1 ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) = ( 𝐹 ↾ { 𝑧 } ) )
66 64 65 ax-mp ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) = ( 𝐹 ↾ { 𝑧 } )
67 66 eqcomi ( 𝐹 ↾ { 𝑧 } ) = ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } )
68 67 fveq2i ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ ( ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ↾ { 𝑧 } ) )
69 eqid ( 𝑢 ( ∏t ‘ ( 𝐹𝑦 ) ) , 𝑣 ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢𝑣 ) ) = ( 𝑢 ( ∏t ‘ ( 𝐹𝑦 ) ) , 𝑣 ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢𝑣 ) )
70 vex 𝑦 ∈ V
71 snex { 𝑧 } ∈ V
72 70 71 unex ( 𝑦 ∪ { 𝑧 } ) ∈ V
73 72 a1i ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ V )
74 simplr ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ Comp )
75 cmptop ( 𝑥 ∈ Comp → 𝑥 ∈ Top )
76 75 ssriv Comp ⊆ Top
77 fss ( ( 𝐹 : 𝐴 ⟶ Comp ∧ Comp ⊆ Top ) → 𝐹 : 𝐴 ⟶ Top )
78 74 76 77 sylancl ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ Top )
79 simprr ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 )
80 78 79 fssresd ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top )
81 eqidd ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) )
82 simprl ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ¬ 𝑧𝑦 )
83 disjsn ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧𝑦 )
84 82 83 sylibr ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ )
85 57 58 59 63 68 69 73 80 81 84 ptunhmeo ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑢 ( ∏t ‘ ( 𝐹𝑦 ) ) , 𝑣 ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢𝑣 ) ) ∈ ( ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) )
86 hmphi ( ( 𝑢 ( ∏t ‘ ( 𝐹𝑦 ) ) , 𝑣 ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ↦ ( 𝑢𝑣 ) ) ∈ ( ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) Homeo ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
87 85 86 syl ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
88 1 ad2antlr ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝐹 Fn 𝐴 )
89 64 79 sstrid ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → { 𝑧 } ⊆ 𝐴 )
90 vex 𝑧 ∈ V
91 90 snss ( 𝑧𝐴 ↔ { 𝑧 } ⊆ 𝐴 )
92 89 91 sylibr ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧𝐴 )
93 fnressn ( ( 𝐹 Fn 𝐴𝑧𝐴 ) → ( 𝐹 ↾ { 𝑧 } ) = { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } )
94 88 92 93 syl2anc ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹 ↾ { 𝑧 } ) = { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } )
95 94 fveq2d ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) = ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) )
96 eqid ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) = ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } )
97 90 a1i ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ V )
98 74 92 ffvelrnd ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹𝑧 ) ∈ Comp )
99 76 98 sselid ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹𝑧 ) ∈ Top )
100 toptopon2 ( ( 𝐹𝑧 ) ∈ Top ↔ ( 𝐹𝑧 ) ∈ ( TopOn ‘ ( 𝐹𝑧 ) ) )
101 99 100 sylib ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹𝑧 ) ∈ ( TopOn ‘ ( 𝐹𝑧 ) ) )
102 96 97 101 pt1hmeo ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑥 ( 𝐹𝑧 ) ↦ { ⟨ 𝑧 , 𝑥 ⟩ } ) ∈ ( ( 𝐹𝑧 ) Homeo ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) ) )
103 hmphi ( ( 𝑥 ( 𝐹𝑧 ) ↦ { ⟨ 𝑧 , 𝑥 ⟩ } ) ∈ ( ( 𝐹𝑧 ) Homeo ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) ) → ( 𝐹𝑧 ) ≃ ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) )
104 102 103 syl ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝐹𝑧 ) ≃ ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) )
105 cmphmph ( ( 𝐹𝑧 ) ≃ ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) → ( ( 𝐹𝑧 ) ∈ Comp → ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) ∈ Comp ) )
106 104 98 105 sylc ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ { ⟨ 𝑧 , ( 𝐹𝑧 ) ⟩ } ) ∈ Comp )
107 95 106 eqeltrd ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp )
108 txcmp ( ( ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ∧ ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp ) → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp )
109 108 expcom ( ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) )
110 107 109 syl ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp ) )
111 cmphmph ( ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ≃ ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) → ( ( ( ∏t ‘ ( 𝐹𝑦 ) ) ×t ( ∏t ‘ ( 𝐹 ↾ { 𝑧 } ) ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) )
112 87 110 111 sylsyld ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) ∧ ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) )
113 112 expcom ( ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) )
114 113 a2d ( ( ¬ 𝑧𝑦 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) )
115 114 ex ( ¬ 𝑧𝑦 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) )
116 115 a2d ( ¬ 𝑧𝑦 → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) )
117 56 116 syl5 ( ¬ 𝑧𝑦 → ( ( 𝑦𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) )
118 117 adantl ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( 𝑦𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝑦 ) ) ∈ Comp ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ Comp ) ) ) )
119 14 20 26 32 52 118 findcard2s ( 𝐴 ∈ Fin → ( 𝐴𝐴 → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝐴 ) ) ∈ Comp ) ) )
120 6 119 mpi ( 𝐴 ∈ Fin → ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝐴 ) ) ∈ Comp ) )
121 120 anabsi5 ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t ‘ ( 𝐹𝐴 ) ) ∈ Comp )
122 5 121 eqeltrrd ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 ⟶ Comp ) → ( ∏t𝐹 ) ∈ Comp )