| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcmp.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 2 |  | ptcmp.2 | ⊢ 𝑋  =  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 3 |  | ptcmp.3 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | ptcmp.4 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ Comp ) | 
						
							| 5 |  | ptcmp.5 | ⊢ ( 𝜑  →  𝑋  ∈  ( UFL  ∩  dom  card ) ) | 
						
							| 6 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 8 | 7 | ptval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 9 | 3 6 8 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 10 |  | cmptop | ⊢ ( 𝑥  ∈  Comp  →  𝑥  ∈  Top ) | 
						
							| 11 | 10 | ssriv | ⊢ Comp  ⊆  Top | 
						
							| 12 |  | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ Comp  ∧  Comp  ⊆  Top )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 14 | 7 2 | ptbasfi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 15 | 3 13 14 | syl2anc | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 16 |  | uncom | ⊢ ( ran  𝑆  ∪  { 𝑋 } )  =  ( { 𝑋 }  ∪  ran  𝑆 ) | 
						
							| 17 | 1 | rneqi | ⊢ ran  𝑆  =  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 18 | 17 | uneq2i | ⊢ ( { 𝑋 }  ∪  ran  𝑆 )  =  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 19 | 16 18 | eqtri | ⊢ ( ran  𝑆  ∪  { 𝑋 } )  =  ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 20 | 19 | fveq2i | ⊢ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) )  =  ( fi ‘ ( { 𝑋 }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 21 | 15 20 | eqtr4di | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝜑  →  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } )  =  ( topGen ‘ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) ) | 
						
							| 23 | 9 22 | eqtrd | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) ) | 
						
							| 24 | 23 | unieqd | ⊢ ( 𝜑  →  ∪  ( ∏t ‘ 𝐹 )  =  ∪  ( topGen ‘ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) ) | 
						
							| 25 |  | fibas | ⊢ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) )  ∈  TopBases | 
						
							| 26 |  | unitg | ⊢ ( ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) )  ∈  TopBases  →  ∪  ( topGen ‘ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) )  =  ∪  ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ∪  ( topGen ‘ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) )  =  ∪  ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) | 
						
							| 28 | 24 27 | eqtrdi | ⊢ ( 𝜑  →  ∪  ( ∏t ‘ 𝐹 )  =  ∪  ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( ∏t ‘ 𝐹 )  =  ( ∏t ‘ 𝐹 ) | 
						
							| 30 | 29 | ptuni | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 31 | 3 13 30 | syl2anc | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 32 | 2 31 | eqtrid | ⊢ ( 𝜑  →  𝑋  =  ∪  ( ∏t ‘ 𝐹 ) ) | 
						
							| 33 | 5 | pwexd | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  V ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) ) | 
						
							| 35 | 34 | mptpreima | ⊢ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  { 𝑤  ∈  𝑋  ∣  ( 𝑤 ‘ 𝑘 )  ∈  𝑢 } | 
						
							| 36 | 35 | ssrab3 | ⊢ ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ⊆  𝑋 | 
						
							| 37 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝑋  ∈  ( UFL  ∩  dom  card ) ) | 
						
							| 38 |  | elpw2g | ⊢ ( 𝑋  ∈  ( UFL  ∩  dom  card )  →  ( ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝒫  𝑋  ↔  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ⊆  𝑋 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝒫  𝑋  ↔  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ⊆  𝑋 ) ) | 
						
							| 40 | 36 39 | mpbiri | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝒫  𝑋 ) | 
						
							| 41 | 40 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 ∀ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝒫  𝑋 ) | 
						
							| 42 | 1 | fmpox | ⊢ ( ∀ 𝑘  ∈  𝐴 ∀ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝒫  𝑋  ↔  𝑆 : ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝒫  𝑋 ) | 
						
							| 43 | 41 42 | sylib | ⊢ ( 𝜑  →  𝑆 : ∪  𝑘  ∈  𝐴 ( { 𝑘 }  ×  ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝒫  𝑋 ) | 
						
							| 44 | 43 | frnd | ⊢ ( 𝜑  →  ran  𝑆  ⊆  𝒫  𝑋 ) | 
						
							| 45 | 33 44 | ssexd | ⊢ ( 𝜑  →  ran  𝑆  ∈  V ) | 
						
							| 46 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 47 |  | unexg | ⊢ ( ( ran  𝑆  ∈  V  ∧  { 𝑋 }  ∈  V )  →  ( ran  𝑆  ∪  { 𝑋 } )  ∈  V ) | 
						
							| 48 | 45 46 47 | sylancl | ⊢ ( 𝜑  →  ( ran  𝑆  ∪  { 𝑋 } )  ∈  V ) | 
						
							| 49 |  | fiuni | ⊢ ( ( ran  𝑆  ∪  { 𝑋 } )  ∈  V  →  ∪  ( ran  𝑆  ∪  { 𝑋 } )  =  ∪  ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ∪  ( ran  𝑆  ∪  { 𝑋 } )  =  ∪  ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) | 
						
							| 51 | 28 32 50 | 3eqtr4d | ⊢ ( 𝜑  →  𝑋  =  ∪  ( ran  𝑆  ∪  { 𝑋 } ) ) | 
						
							| 52 | 51 23 | jca | ⊢ ( 𝜑  →  ( 𝑋  =  ∪  ( ran  𝑆  ∪  { 𝑋 } )  ∧  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ ( fi ‘ ( ran  𝑆  ∪  { 𝑋 } ) ) ) ) ) |