Step |
Hyp |
Ref |
Expression |
1 |
|
ptcmp.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
2 |
|
ptcmp.2 |
⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) |
3 |
|
ptcmp.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
ptcmp.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) |
5 |
|
ptcmp.5 |
⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) |
6 |
5
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ UFL ) |
7 |
1 2 3 4 5
|
ptcmplem1 |
⊢ ( 𝜑 → ( 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → 𝑋 = ∪ ( ran 𝑆 ∪ { 𝑋 } ) ) |
9 |
7
|
simprd |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) |
10 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 ran 𝑆 → 𝑦 ⊆ ran 𝑆 ) |
11 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝐴 ∈ 𝑉 ) |
12 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝐹 : 𝐴 ⟶ Comp ) |
13 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝑋 ∈ ( UFL ∩ dom card ) ) |
14 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝑦 ⊆ ran 𝑆 ) |
15 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → 𝑋 = ∪ 𝑦 ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
17 |
|
imaeq2 |
⊢ ( 𝑧 = 𝑢 → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑧 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑧 = 𝑢 → ( ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑧 ) ∈ 𝑦 ↔ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑦 ) ) |
19 |
18
|
cbvrabv |
⊢ { 𝑧 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑧 ) ∈ 𝑦 } = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑦 } |
20 |
1 2 11 12 13 14 15 16 19
|
ptcmplem4 |
⊢ ¬ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
21 |
|
iman |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ↔ ¬ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
22 |
20 21
|
mpbir |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆 ∧ 𝑋 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
23 |
22
|
expr |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
24 |
10 23
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
26 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ↔ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) |
27 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∖ 𝒫 ran 𝑆 ) ↔ ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) ) |
28 |
|
elpwunsn |
⊢ ( 𝑦 ∈ ( 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∖ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
29 |
27 28
|
sylbir |
⊢ ( ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
30 |
26 29
|
sylanbr |
⊢ ( ( 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
31 |
30
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋 ∈ 𝑦 ) |
32 |
|
snssi |
⊢ ( 𝑋 ∈ 𝑦 → { 𝑋 } ⊆ 𝑦 ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → { 𝑋 } ⊆ 𝑦 ) |
34 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
35 |
|
elfpw |
⊢ ( { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( { 𝑋 } ⊆ 𝑦 ∧ { 𝑋 } ∈ Fin ) ) |
36 |
33 34 35
|
sylanblrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
37 |
|
unisng |
⊢ ( 𝑋 ∈ 𝑦 → ∪ { 𝑋 } = 𝑋 ) |
38 |
37
|
eqcomd |
⊢ ( 𝑋 ∈ 𝑦 → 𝑋 = ∪ { 𝑋 } ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → 𝑋 = ∪ { 𝑋 } ) |
40 |
|
unieq |
⊢ ( 𝑧 = { 𝑋 } → ∪ 𝑧 = ∪ { 𝑋 } ) |
41 |
40
|
rspceeqv |
⊢ ( ( { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ 𝑋 = ∪ { 𝑋 } ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
42 |
36 39 41
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
43 |
42
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ 𝑦 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
44 |
31 43
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
45 |
25 44
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
46 |
45
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ∧ 𝑋 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
47 |
6 8 9 46
|
alexsub |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Comp ) |