Metamath Proof Explorer


Theorem ptcmplem5

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 𝑆 = ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
ptcmp.2 𝑋 = X 𝑛𝐴 ( 𝐹𝑛 )
ptcmp.3 ( 𝜑𝐴𝑉 )
ptcmp.4 ( 𝜑𝐹 : 𝐴 ⟶ Comp )
ptcmp.5 ( 𝜑𝑋 ∈ ( UFL ∩ dom card ) )
Assertion ptcmplem5 ( 𝜑 → ( ∏t𝐹 ) ∈ Comp )

Proof

Step Hyp Ref Expression
1 ptcmp.1 𝑆 = ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
2 ptcmp.2 𝑋 = X 𝑛𝐴 ( 𝐹𝑛 )
3 ptcmp.3 ( 𝜑𝐴𝑉 )
4 ptcmp.4 ( 𝜑𝐹 : 𝐴 ⟶ Comp )
5 ptcmp.5 ( 𝜑𝑋 ∈ ( UFL ∩ dom card ) )
6 5 elin1d ( 𝜑𝑋 ∈ UFL )
7 1 2 3 4 5 ptcmplem1 ( 𝜑 → ( 𝑋 = ( ran 𝑆 ∪ { 𝑋 } ) ∧ ( ∏t𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) ) )
8 7 simpld ( 𝜑𝑋 = ( ran 𝑆 ∪ { 𝑋 } ) )
9 7 simprd ( 𝜑 → ( ∏t𝐹 ) = ( topGen ‘ ( fi ‘ ( ran 𝑆 ∪ { 𝑋 } ) ) ) )
10 elpwi ( 𝑦 ∈ 𝒫 ran 𝑆𝑦 ⊆ ran 𝑆 )
11 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → 𝐴𝑉 )
12 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → 𝐹 : 𝐴 ⟶ Comp )
13 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → 𝑋 ∈ ( UFL ∩ dom card ) )
14 simplrl ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → 𝑦 ⊆ ran 𝑆 )
15 simplrr ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → 𝑋 = 𝑦 )
16 simpr ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
17 imaeq2 ( 𝑧 = 𝑢 → ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑧 ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
18 17 eleq1d ( 𝑧 = 𝑢 → ( ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑧 ) ∈ 𝑦 ↔ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ∈ 𝑦 ) )
19 18 cbvrabv { 𝑧 ∈ ( 𝐹𝑘 ) ∣ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑧 ) ∈ 𝑦 } = { 𝑢 ∈ ( 𝐹𝑘 ) ∣ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ∈ 𝑦 }
20 1 2 11 12 13 14 15 16 19 ptcmplem4 ¬ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
21 iman ( ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ↔ ¬ ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
22 20 21 mpbir ( ( 𝜑 ∧ ( 𝑦 ⊆ ran 𝑆𝑋 = 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
23 22 expr ( ( 𝜑𝑦 ⊆ ran 𝑆 ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
24 10 23 sylan2 ( ( 𝜑𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
25 24 adantlr ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
26 velpw ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ↔ 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) )
27 eldif ( 𝑦 ∈ ( 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∖ 𝒫 ran 𝑆 ) ↔ ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) )
28 elpwunsn ( 𝑦 ∈ ( 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∖ 𝒫 ran 𝑆 ) → 𝑋𝑦 )
29 27 28 sylbir ( ( 𝑦 ∈ 𝒫 ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋𝑦 )
30 26 29 sylanbr ( ( 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋𝑦 )
31 30 adantll ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → 𝑋𝑦 )
32 snssi ( 𝑋𝑦 → { 𝑋 } ⊆ 𝑦 )
33 32 adantl ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋𝑦 ) → { 𝑋 } ⊆ 𝑦 )
34 snfi { 𝑋 } ∈ Fin
35 elfpw ( { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( { 𝑋 } ⊆ 𝑦 ∧ { 𝑋 } ∈ Fin ) )
36 33 34 35 sylanblrc ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋𝑦 ) → { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) )
37 unisng ( 𝑋𝑦 { 𝑋 } = 𝑋 )
38 37 eqcomd ( 𝑋𝑦𝑋 = { 𝑋 } )
39 38 adantl ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋𝑦 ) → 𝑋 = { 𝑋 } )
40 unieq ( 𝑧 = { 𝑋 } → 𝑧 = { 𝑋 } )
41 40 rspceeqv ( ( { 𝑋 } ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ 𝑋 = { 𝑋 } ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
42 36 39 41 syl2anc ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
43 42 a1d ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ 𝑋𝑦 ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
44 31 43 syldan ( ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) ∧ ¬ 𝑦 ∈ 𝒫 ran 𝑆 ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
45 25 44 pm2.61dan ( ( 𝜑𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
46 45 impr ( ( 𝜑 ∧ ( 𝑦 ⊆ ( ran 𝑆 ∪ { 𝑋 } ) ∧ 𝑋 = 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 )
47 6 8 9 46 alexsub ( 𝜑 → ( ∏t𝐹 ) ∈ Comp )