| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcn.2 | ⊢ 𝐾  =  ( ∏t ‘ 𝐹 ) | 
						
							| 2 |  | ptcn.3 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | ptcn.4 | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | ptcn.5 | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ Top ) | 
						
							| 5 |  | ptcn.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 7 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑘 )  ∈  Top ) | 
						
							| 8 |  | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  Top  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 10 |  | cnf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) )  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 11 | 6 9 5 10 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 | 11 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 13 | 12 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐼  ∈  𝑉 ) | 
						
							| 16 |  | mptelixpg | ⊢ ( 𝐼  ∈  𝑉  →  ( ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 19 | 1 | ptuni | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ Top )  →  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 20 | 3 4 19 | syl2anc | ⊢ ( 𝜑  →  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 22 | 18 21 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  ∪  𝐾 ) | 
						
							| 23 | 22 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 24 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 25 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  𝐼  ∈  𝑉 ) | 
						
							| 26 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  𝐹 : 𝐼 ⟶ Top ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  𝑧  ∈  𝑋 ) | 
						
							| 28 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  𝑧  ∈  𝑋 ) | 
						
							| 30 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 31 | 2 30 | syl | ⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 33 | 29 32 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  𝑧  ∈  ∪  𝐽 ) | 
						
							| 34 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 35 | 34 | cncnpi | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) )  ∧  𝑧  ∈  ∪  𝐽 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑧 ) ) | 
						
							| 36 | 28 33 35 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑧 ) ) | 
						
							| 37 | 1 24 25 26 27 36 | ptcnp | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑋 )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑧 ) ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑋 ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑧 ) ) | 
						
							| 39 |  | pttop | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝐹 : 𝐼 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 40 | 3 4 39 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 41 | 1 40 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 42 |  | toptopon2 | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 43 | 41 42 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 44 |  | cncnp | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) : 𝑋 ⟶ ∪  𝐾  ∧  ∀ 𝑧  ∈  𝑋 ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑧 ) ) ) ) | 
						
							| 45 | 2 43 44 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) : 𝑋 ⟶ ∪  𝐾  ∧  ∀ 𝑧  ∈  𝑋 ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑧 ) ) ) ) | 
						
							| 46 | 23 38 45 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) |