| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcnp.2 | ⊢ 𝐾  =  ( ∏t ‘ 𝐹 ) | 
						
							| 2 |  | ptcnp.3 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | ptcnp.4 | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | ptcnp.5 | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ Top ) | 
						
							| 5 |  | ptcnp.6 | ⊢ ( 𝜑  →  𝐷  ∈  𝑋 ) | 
						
							| 6 |  | ptcnp.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 8 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑘 )  ∈  Top ) | 
						
							| 9 |  | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  Top  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cnpf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) )  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 | 7 10 6 11 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 13 | 12 | fvmptelcdm | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 14 | 13 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐼  ∈  𝑉 ) | 
						
							| 17 |  | mptelixpg | ⊢ ( 𝐼  ∈  𝑉  →  ( ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 19 | 15 18 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 20 | 19 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) : 𝑋 ⟶ X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 21 |  | df-3an | ⊢ ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ↔  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑘 𝑋 | 
						
							| 25 |  | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  𝐼  ↦  𝐴 ) | 
						
							| 26 | 24 25 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑘 𝐷 | 
						
							| 28 | 26 27 | nffv | ⊢ Ⅎ 𝑘 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) | 
						
							| 29 | 28 | nfel1 | ⊢ Ⅎ 𝑘 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) | 
						
							| 30 | 23 29 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 31 | 22 30 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 32 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  𝑔  Fn  𝐼 ) | 
						
							| 33 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 36 | 34 35 | eleq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 37 | 36 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 38 | 33 37 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 39 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 40 | 39 | simpld | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  𝑤  ∈  Fin ) | 
						
							| 41 | 39 | simprd | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 42 | 35 | unieqd | ⊢ ( 𝑛  =  𝑘  →  ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 43 | 34 42 | eqeq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 )  ↔  ( 𝑔 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 44 | 43 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 )  ∧  𝑘  ∈  ( 𝐼  ∖  𝑤 ) )  →  ( 𝑔 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 45 | 41 44 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  ∧  𝑘  ∈  ( 𝐼  ∖  𝑤 ) )  →  ( 𝑔 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 46 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 47 | 34 | cbvixpv | ⊢ X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) | 
						
							| 48 | 46 47 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 49 | 1 2 3 4 5 6 31 32 38 40 45 48 | ptcnplem | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 50 | 49 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) )  ∧  ( ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 51 | 50 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) )  ∧  ( 𝑤  ∈  Fin  ∧  ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 52 | 51 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 53 | 52 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 54 | 21 53 | sylan2b | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 55 |  | eleq2 | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 56 | 47 | eqeq2i | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ↔  𝑓  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 57 | 56 | biimpi | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  𝑓  =  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 58 | 57 | sseq2d | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 59 | 58 | anbi2d | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ( ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 )  ↔  ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 60 | 59 | rexbidv | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ( ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 )  ↔  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 61 | 55 60 | imbi12d | ⊢ ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ( ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) )  ↔  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) | 
						
							| 62 | 54 61 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) ) | 
						
							| 63 | 62 | expimpd | ⊢ ( 𝜑  →  ( ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) ) | 
						
							| 64 | 63 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) ) | 
						
							| 65 | 64 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) ) | 
						
							| 66 |  | eqeq1 | ⊢ ( 𝑎  =  𝑓  →  ( 𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ↔  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 67 | 66 | anbi2d | ⊢ ( 𝑎  =  𝑓  →  ( ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) )  ↔  ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 68 | 67 | exbidv | ⊢ ( 𝑎  =  𝑓  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) )  ↔  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 69 | 68 | ralab | ⊢ ( ∀ 𝑓  ∈  { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) )  ↔  ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑓  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) ) | 
						
							| 70 | 65 69 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) | 
						
							| 71 | 4 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐼 ) | 
						
							| 72 |  | eqid | ⊢ { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) }  =  { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } | 
						
							| 73 | 72 | ptval | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝐹  Fn  𝐼 )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) | 
						
							| 74 | 3 71 73 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) | 
						
							| 75 | 1 74 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( topGen ‘ { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) | 
						
							| 76 | 4 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 77 | 76 | fveq2d | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  =  ( ∏t ‘ ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 78 | 1 77 | eqtrid | ⊢ ( 𝜑  →  𝐾  =  ( ∏t ‘ ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 79 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐼 ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 80 |  | eqid | ⊢ ( ∏t ‘ ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) )  =  ( ∏t ‘ ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 81 | 80 | pttopon | ⊢ ( ( 𝐼  ∈  𝑉  ∧  ∀ 𝑘  ∈  𝐼 ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ∏t ‘ ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( TopOn ‘ X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 82 | 3 79 81 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( 𝑘  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ( TopOn ‘ X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 83 | 78 82 | eqeltrd | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 84 | 2 75 83 5 | tgcnp | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝐷 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) : 𝑋 ⟶ X 𝑘  ∈  𝐼 ∪  ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑓  ∈  { 𝑎  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐼  ∧  ∀ 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ∃ 𝑤  ∈  Fin ∀ 𝑛  ∈  ( 𝐼  ∖  𝑤 ) ( 𝑔 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) )  ∧  𝑎  =  X 𝑛  ∈  𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  𝑓  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  𝑓 ) ) ) ) ) | 
						
							| 85 | 20 70 84 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝐷 ) ) |