Step |
Hyp |
Ref |
Expression |
1 |
|
ptcnp.2 |
⊢ 𝐾 = ( ∏t ‘ 𝐹 ) |
2 |
|
ptcnp.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
ptcnp.4 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
ptcnp.5 |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) |
5 |
|
ptcnp.6 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) |
6 |
|
ptcnp.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
8 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
9 |
|
toptopon2 |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
11 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
12 |
7 10 6 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
13 |
12
|
fvmptelrn |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
14 |
13
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
17 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
19 |
15 18
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) |
20 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) |
21 |
|
df-3an |
⊢ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
23 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
25 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) |
26 |
24 25
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐷 |
28 |
26 27
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
29 |
28
|
nfel1 |
⊢ Ⅎ 𝑘 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) |
30 |
23 29
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) |
31 |
22 30
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) |
32 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → 𝑔 Fn 𝐼 ) |
33 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑘 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
36 |
34 35
|
eleq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) ) |
37 |
36
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
38 |
33 37
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
39 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
40 |
39
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → 𝑤 ∈ Fin ) |
41 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
42 |
35
|
unieqd |
⊢ ( 𝑛 = 𝑘 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
43 |
34 42
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
44 |
43
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑤 ) ) → ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
45 |
41 44
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑤 ) ) → ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
46 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) |
47 |
34
|
cbvixpv |
⊢ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) |
48 |
46 47
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) |
49 |
1 2 3 4 5 6 31 32 38 40 45 48
|
ptcnplem |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
50 |
49
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ∧ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
51 |
50
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ∧ ( 𝑤 ∈ Fin ∧ ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
52 |
51
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
53 |
52
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
54 |
21 53
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
55 |
|
eleq2 |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) |
56 |
47
|
eqeq2i |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ↔ 𝑓 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) |
57 |
56
|
biimpi |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → 𝑓 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) |
58 |
57
|
sseq2d |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) |
59 |
58
|
anbi2d |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ↔ ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
60 |
59
|
rexbidv |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ↔ ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) |
61 |
55 60
|
imbi12d |
⊢ ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ↔ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
62 |
54 61
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
63 |
62
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
64 |
63
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
65 |
64
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
66 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑓 → ( 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ↔ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) |
67 |
66
|
anbi2d |
⊢ ( 𝑎 = 𝑓 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ↔ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) |
68 |
67
|
exbidv |
⊢ ( 𝑎 = 𝑓 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ↔ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) ) ) |
69 |
68
|
ralab |
⊢ ( ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ↔ ∀ 𝑓 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑓 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) |
70 |
65 69
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) |
71 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
72 |
|
eqid |
⊢ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } = { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } |
73 |
72
|
ptval |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 Fn 𝐼 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) |
74 |
3 71 73
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) |
75 |
1 74
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( topGen ‘ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ) ) |
76 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
77 |
76
|
fveq2d |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) = ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
78 |
1 77
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
79 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
80 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
81 |
80
|
pttopon |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( TopOn ‘ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
82 |
3 79 81
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( TopOn ‘ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
83 |
78 82
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
84 |
2 75 83 5
|
tgcnp |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑓 ∈ { 𝑎 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ∃ 𝑤 ∈ Fin ∀ 𝑛 ∈ ( 𝐼 ∖ 𝑤 ) ( 𝑔 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑎 = X 𝑛 ∈ 𝐼 ( 𝑔 ‘ 𝑛 ) ) } ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ 𝑓 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ 𝑓 ) ) ) ) ) |
85 |
20 70 84
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) |