Step |
Hyp |
Ref |
Expression |
1 |
|
ptcnp.2 |
⊢ 𝐾 = ( ∏t ‘ 𝐹 ) |
2 |
|
ptcnp.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
ptcnp.4 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
4 |
|
ptcnp.5 |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) |
5 |
|
ptcnp.6 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) |
6 |
|
ptcnp.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) |
7 |
|
ptcnplem.1 |
⊢ Ⅎ 𝑘 𝜓 |
8 |
|
ptcnplem.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 Fn 𝐼 ) |
9 |
|
ptcnplem.3 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
10 |
|
ptcnplem.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ∈ Fin ) |
11 |
|
ptcnplem.5 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
12 |
|
ptcnplem.6 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
13 |
|
inss2 |
⊢ ( 𝐼 ∩ 𝑊 ) ⊆ 𝑊 |
14 |
|
ssfi |
⊢ ( ( 𝑊 ∈ Fin ∧ ( 𝐼 ∩ 𝑊 ) ⊆ 𝑊 ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
15 |
10 13 14
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
16 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
17 |
16 7
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝜓 ) |
18 |
|
elinel1 |
⊢ ( 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) → 𝑘 ∈ 𝐼 ) |
19 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ 𝑋 ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
23 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
24 |
|
toptopon2 |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
26 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
27 |
22 25 6 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
28 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
29 |
28
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
30 |
27 29
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
31 |
30
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
32 |
28
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
33 |
21 31 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
34 |
33
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
35 |
34
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
37 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
38 |
37
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
39 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
40 |
39
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
41 |
36 38 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
42 |
35 41
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
43 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐼 |
46 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) |
47 |
45 46
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) |
48 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
49 |
47 48
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) |
50 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) |
51 |
50
|
mpteq2dv |
⊢ ( 𝑥 = 𝐷 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ) |
52 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) |
53 |
51 52
|
eqeq12d |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ↔ ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) ) |
54 |
49 53
|
rspc |
⊢ ( 𝐷 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) ) |
55 |
20 44 54
|
sylc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝐷 ) ) |
56 |
55 12
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
57 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐼 ∈ 𝑉 ) |
58 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
59 |
57 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
60 |
56 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ 𝐼 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
61 |
60
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
62 |
|
cnpimaex |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
63 |
19 9 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ 𝐼 ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
64 |
18 63
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) → ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
66 |
17 65
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
67 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( 𝐷 ∈ 𝑢 ↔ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
68 |
|
imaeq2 |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ) |
69 |
68
|
sseq1d |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) |
70 |
67 69
|
anbi12d |
⊢ ( 𝑢 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
71 |
70
|
ac6sfi |
⊢ ( ( ( 𝐼 ∩ 𝑊 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∃ 𝑢 ∈ 𝐽 ( 𝐷 ∈ 𝑢 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑢 ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
72 |
15 66 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑓 ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) |
73 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
74 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
75 |
73 74
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
76 |
75
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) = ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ) |
77 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
78 |
2 77
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐽 ∈ Top ) |
80 |
|
frn |
⊢ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 → ran 𝑓 ⊆ 𝐽 ) |
81 |
80
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ran 𝑓 ⊆ 𝐽 ) |
82 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝐼 ∩ 𝑊 ) ∈ Fin ) |
83 |
|
ffn |
⊢ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
84 |
83
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
85 |
|
dffn4 |
⊢ ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ↔ 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) |
86 |
84 85
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) |
87 |
|
fofi |
⊢ ( ( ( 𝐼 ∩ 𝑊 ) ∈ Fin ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
88 |
82 86 87
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ran 𝑓 ∈ Fin ) |
89 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
90 |
89
|
rintopn |
⊢ ( ( 𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ∈ Fin ) → ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
91 |
79 81 88 90
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∪ 𝐽 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
92 |
76 91
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ) |
93 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐷 ∈ 𝑋 ) |
94 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
95 |
94
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
96 |
95
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) |
97 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑘 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
98 |
97
|
ralrn |
⊢ ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) → ( ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
99 |
84 98
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) ) |
100 |
96 99
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ) |
101 |
|
elrint |
⊢ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ↔ ( 𝐷 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ) ) |
102 |
93 100 101
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) |
103 |
|
nfv |
⊢ Ⅎ 𝑘 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 |
104 |
17 103
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) |
105 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
106 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝜑 ) |
107 |
106 2
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
108 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) |
109 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) |
110 |
108 109
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝐽 ) |
111 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝐽 ) → ( 𝑓 ‘ 𝑘 ) ⊆ 𝑋 ) |
112 |
107 110 111
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ⊆ 𝑋 ) |
113 |
109
|
elin1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑘 ∈ 𝐼 ) |
114 |
106 113 30
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
115 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
116 |
114 115
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
117 |
112 116
|
sseqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
118 |
|
funimass4 |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ ( 𝑓 ‘ 𝑘 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
119 |
105 117 118
|
sylancr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
120 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) |
121 |
120
|
nfel1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) |
122 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) |
123 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) |
124 |
123
|
eleq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
125 |
121 122 124
|
cbvralw |
⊢ ( ∀ 𝑡 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) |
126 |
119 125
|
bitrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
127 |
|
inss1 |
⊢ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ 𝑋 |
128 |
|
ssralv |
⊢ ( ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
129 |
127 114 128
|
mpsyl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
130 |
|
inss2 |
⊢ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ∩ ran 𝑓 |
131 |
108 83
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ) |
132 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ( 𝐼 ∩ 𝑊 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 ) |
133 |
131 109 132
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 ) |
134 |
|
intss1 |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ran 𝑓 → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑘 ) ) |
135 |
133 134
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ∩ ran 𝑓 ⊆ ( 𝑓 ‘ 𝑘 ) ) |
136 |
130 135
|
sstrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑘 ) ) |
137 |
|
ssralv |
⊢ ( ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ ( 𝑓 ‘ 𝑘 ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
138 |
136 137
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
139 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
140 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) → 𝑥 ∈ 𝑋 ) |
141 |
140 32
|
sylan |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
142 |
141
|
eleq1d |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ↔ 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
143 |
142
|
biimpd |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
144 |
143
|
expimpd |
⊢ ( 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
145 |
144
|
ralimia |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
146 |
139 145
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
147 |
129 138 146
|
syl6an |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ∀ 𝑥 ∈ ( 𝑓 ‘ 𝑘 ) ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
148 |
126 147
|
sylbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) ∧ 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
149 |
148
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) ∧ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ) → ( ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
150 |
104 149
|
ralimdaa |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ) → ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
151 |
150
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
152 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
153 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) → 𝑘 ∈ 𝐼 ) |
154 |
140 31
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
155 |
154
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
156 |
152 153 155
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
157 |
|
eleq2 |
⊢ ( ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → ( 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
158 |
157
|
ralbidv |
⊢ ( ( 𝐺 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
159 |
11 158
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
160 |
156 159
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
161 |
160
|
ex |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
162 |
17 161
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
163 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
164 |
|
inundif |
⊢ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) = 𝐼 |
165 |
164
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
166 |
|
ralunb |
⊢ ( ∀ 𝑘 ∈ ( ( 𝐼 ∩ 𝑊 ) ∪ ( 𝐼 ∖ 𝑊 ) ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
167 |
165 166
|
bitr3i |
⊢ ( ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ∧ ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑊 ) ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
168 |
151 163 167
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
169 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
170 |
168 169
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) |
171 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → 𝐼 ∈ 𝑉 ) |
172 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) |
173 |
172
|
nfel1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) |
174 |
|
nfv |
⊢ Ⅎ 𝑡 ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) |
175 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ) |
176 |
175
|
eleq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
177 |
173 174 176
|
cbvralw |
⊢ ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
178 |
|
mptexg |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
179 |
140 178 40
|
syl2anr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) = ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
180 |
179
|
eleq1d |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
181 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
183 |
180 182
|
bitrd |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
184 |
183
|
ralbidva |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑥 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
185 |
177 184
|
syl5bb |
⊢ ( 𝐼 ∈ 𝑉 → ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
186 |
171 185
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ( 𝐺 ‘ 𝑘 ) ) ) |
187 |
170 186
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
188 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) |
189 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
190 |
189
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
191 |
190
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V ) |
192 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ V → dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = 𝑋 ) |
193 |
191 192
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) = 𝑋 ) |
194 |
127 193
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ) |
195 |
|
funimass4 |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∧ ( 𝑋 ∩ ∩ ran 𝑓 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
196 |
188 194 195
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ‘ 𝑡 ) ∈ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
197 |
187 196
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) |
198 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ) |
199 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ) |
200 |
199
|
sseq1d |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
201 |
198 200
|
anbi12d |
⊢ ( 𝑧 = ( 𝑋 ∩ ∩ ran 𝑓 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) ) |
202 |
201
|
rspcev |
⊢ ( ( ( 𝑋 ∩ ∩ ran 𝑓 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑋 ∩ ∩ ran 𝑓 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ ( 𝑋 ∩ ∩ ran 𝑓 ) ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
203 |
92 102 197 202
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑓 : ( 𝐼 ∩ 𝑊 ) ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ( 𝐼 ∩ 𝑊 ) ( 𝐷 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ ( 𝑓 ‘ 𝑘 ) ) ⊆ ( 𝐺 ‘ 𝑘 ) ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |
204 |
72 203
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) “ 𝑧 ) ⊆ X 𝑘 ∈ 𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |