| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcnp.2 | ⊢ 𝐾  =  ( ∏t ‘ 𝐹 ) | 
						
							| 2 |  | ptcnp.3 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | ptcnp.4 | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | ptcnp.5 | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ Top ) | 
						
							| 5 |  | ptcnp.6 | ⊢ ( 𝜑  →  𝐷  ∈  𝑋 ) | 
						
							| 6 |  | ptcnp.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | 
						
							| 7 |  | ptcnplem.1 | ⊢ Ⅎ 𝑘 𝜓 | 
						
							| 8 |  | ptcnplem.2 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐺  Fn  𝐼 ) | 
						
							| 9 |  | ptcnplem.3 | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 10 |  | ptcnplem.4 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ∈  Fin ) | 
						
							| 11 |  | ptcnplem.5 | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  ( 𝐼  ∖  𝑊 ) )  →  ( 𝐺 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 |  | ptcnplem.6 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 13 |  | inss2 | ⊢ ( 𝐼  ∩  𝑊 )  ⊆  𝑊 | 
						
							| 14 |  | ssfi | ⊢ ( ( 𝑊  ∈  Fin  ∧  ( 𝐼  ∩  𝑊 )  ⊆  𝑊 )  →  ( 𝐼  ∩  𝑊 )  ∈  Fin ) | 
						
							| 15 | 10 13 14 | sylancl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐼  ∩  𝑊 )  ∈  Fin ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 17 | 16 7 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝜓 ) | 
						
							| 18 |  | elinel1 | ⊢ ( 𝑘  ∈  ( 𝐼  ∩  𝑊 )  →  𝑘  ∈  𝐼 ) | 
						
							| 19 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐷  ∈  𝑋 ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 22 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 23 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑘 )  ∈  Top ) | 
						
							| 24 |  | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  Top  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 26 |  | cnpf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( TopOn ‘ ∪  ( 𝐹 ‘ 𝑘 ) )  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 27 | 22 25 6 26 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 28 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 29 | 28 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝑋 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ↔  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 30 | 27 29 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∀ 𝑥  ∈  𝑋 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 31 | 30 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 32 | 28 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 33 | 21 31 32 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 34 | 33 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 35 | 34 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 37 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐼  ∈  𝑉 ) | 
						
							| 38 | 37 | mptexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V ) | 
						
							| 39 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 40 | 39 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  =  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 41 | 36 38 40 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  =  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 42 | 35 41 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 ) ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑥  ∈  𝑋 ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 ) ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑥 𝐼 | 
						
							| 46 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) | 
						
							| 47 | 45 46 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ) | 
						
							| 48 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) | 
						
							| 49 | 47 48 | nfeq | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑥  =  𝐷  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ) | 
						
							| 51 | 50 | mpteq2dv | ⊢ ( 𝑥  =  𝐷  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑥  =  𝐷  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) ) | 
						
							| 53 | 51 52 | eqeq12d | ⊢ ( 𝑥  =  𝐷  →  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ↔  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) ) ) | 
						
							| 54 | 49 53 | rspc | ⊢ ( 𝐷  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) ) ) | 
						
							| 55 | 20 44 54 | sylc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝐷 ) ) | 
						
							| 56 | 55 12 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 57 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  ∈  𝑉 ) | 
						
							| 58 |  | mptelixpg | ⊢ ( 𝐼  ∈  𝑉  →  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑘  ∈  𝐼  ↦  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 60 | 56 59 | mpbid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑘  ∈  𝐼 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 61 | 60 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 62 |  | cnpimaex | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  ( 𝐹 ‘ 𝑘 ) ) ‘ 𝐷 )  ∧  ( 𝐺 ‘ 𝑘 )  ∈  ( 𝐹 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 63 | 19 9 61 62 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  𝐼 )  →  ∃ 𝑢  ∈  𝐽 ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 64 | 18 63 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  →  ∃ 𝑢  ∈  𝐽 ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 65 | 64 | ex | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑘  ∈  ( 𝐼  ∩  𝑊 )  →  ∃ 𝑢  ∈  𝐽 ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 66 | 17 65 | ralrimi | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ∃ 𝑢  ∈  𝐽 ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 67 |  | eleq2 | ⊢ ( 𝑢  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝐷  ∈  𝑢  ↔  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 68 |  | imaeq2 | ⊢ ( 𝑢  =  ( 𝑓 ‘ 𝑘 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 69 | 68 | sseq1d | ⊢ ( 𝑢  =  ( 𝑓 ‘ 𝑘 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 70 | 67 69 | anbi12d | ⊢ ( 𝑢  =  ( 𝑓 ‘ 𝑘 )  →  ( ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 71 | 70 | ac6sfi | ⊢ ( ( ( 𝐼  ∩  𝑊 )  ∈  Fin  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ∃ 𝑢  ∈  𝐽 ( 𝐷  ∈  𝑢  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑢 )  ⊆  ( 𝐺 ‘ 𝑘 ) ) )  →  ∃ 𝑓 ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 72 | 15 66 71 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑓 ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 73 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 74 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 76 | 75 | ineq1d | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( 𝑋  ∩  ∩  ran  𝑓 )  =  ( ∪  𝐽  ∩  ∩  ran  𝑓 ) ) | 
						
							| 77 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 78 | 2 77 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 79 | 78 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝐽  ∈  Top ) | 
						
							| 80 |  | frn | ⊢ ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  →  ran  𝑓  ⊆  𝐽 ) | 
						
							| 81 | 80 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ran  𝑓  ⊆  𝐽 ) | 
						
							| 82 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( 𝐼  ∩  𝑊 )  ∈  Fin ) | 
						
							| 83 |  | ffn | ⊢ ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  →  𝑓  Fn  ( 𝐼  ∩  𝑊 ) ) | 
						
							| 84 | 83 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝑓  Fn  ( 𝐼  ∩  𝑊 ) ) | 
						
							| 85 |  | dffn4 | ⊢ ( 𝑓  Fn  ( 𝐼  ∩  𝑊 )  ↔  𝑓 : ( 𝐼  ∩  𝑊 ) –onto→ ran  𝑓 ) | 
						
							| 86 | 84 85 | sylib | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝑓 : ( 𝐼  ∩  𝑊 ) –onto→ ran  𝑓 ) | 
						
							| 87 |  | fofi | ⊢ ( ( ( 𝐼  ∩  𝑊 )  ∈  Fin  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) –onto→ ran  𝑓 )  →  ran  𝑓  ∈  Fin ) | 
						
							| 88 | 82 86 87 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 89 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 90 | 89 | rintopn | ⊢ ( ( 𝐽  ∈  Top  ∧  ran  𝑓  ⊆  𝐽  ∧  ran  𝑓  ∈  Fin )  →  ( ∪  𝐽  ∩  ∩  ran  𝑓 )  ∈  𝐽 ) | 
						
							| 91 | 79 81 88 90 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( ∪  𝐽  ∩  ∩  ran  𝑓 )  ∈  𝐽 ) | 
						
							| 92 | 76 91 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( 𝑋  ∩  ∩  ran  𝑓 )  ∈  𝐽 ) | 
						
							| 93 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝐷  ∈  𝑋 ) | 
						
							| 94 |  | simpl | ⊢ ( ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) )  →  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 95 | 94 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) 𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 96 | 95 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) 𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 97 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝐷  ∈  𝑧  ↔  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 98 | 97 | ralrn | ⊢ ( 𝑓  Fn  ( 𝐼  ∩  𝑊 )  →  ( ∀ 𝑧  ∈  ran  𝑓 𝐷  ∈  𝑧  ↔  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) 𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 99 | 84 98 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( ∀ 𝑧  ∈  ran  𝑓 𝐷  ∈  𝑧  ↔  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) 𝐷  ∈  ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 100 | 96 99 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑧  ∈  ran  𝑓 𝐷  ∈  𝑧 ) | 
						
							| 101 |  | elrint | ⊢ ( 𝐷  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  ↔  ( 𝐷  ∈  𝑋  ∧  ∀ 𝑧  ∈  ran  𝑓 𝐷  ∈  𝑧 ) ) | 
						
							| 102 | 93 100 101 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝐷  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ) | 
						
							| 103 |  | nfv | ⊢ Ⅎ 𝑘 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 | 
						
							| 104 | 17 103 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 ) | 
						
							| 105 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 106 |  | simp-4l | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  𝜑 ) | 
						
							| 107 | 106 2 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 108 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 ) | 
						
							| 109 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  𝑘  ∈  ( 𝐼  ∩  𝑊 ) ) | 
						
							| 110 | 108 109 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  𝐽 ) | 
						
							| 111 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝑓 ‘ 𝑘 )  ∈  𝐽 )  →  ( 𝑓 ‘ 𝑘 )  ⊆  𝑋 ) | 
						
							| 112 | 107 110 111 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( 𝑓 ‘ 𝑘 )  ⊆  𝑋 ) | 
						
							| 113 | 109 | elin1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  𝑘  ∈  𝐼 ) | 
						
							| 114 | 106 113 30 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ∀ 𝑥  ∈  𝑋 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 115 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝑋 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  →  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  𝑋 ) | 
						
							| 116 | 114 115 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  𝑋 ) | 
						
							| 117 | 112 116 | sseqtrrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( 𝑓 ‘ 𝑘 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 118 |  | funimass4 | ⊢ ( ( Fun  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∧  ( 𝑓 ‘ 𝑘 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑡  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 119 | 105 117 118 | sylancr | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑡  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 120 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) | 
						
							| 121 | 120 | nfel1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( 𝐺 ‘ 𝑘 ) | 
						
							| 122 |  | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) | 
						
							| 123 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ) | 
						
							| 124 | 123 | eleq1d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 125 | 121 122 124 | cbvralw | ⊢ ( ∀ 𝑡  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 126 | 119 125 | bitrdi | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 127 |  | inss1 | ⊢ ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  𝑋 | 
						
							| 128 |  | ssralv | ⊢ ( ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  𝑋  →  ( ∀ 𝑥  ∈  𝑋 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 129 | 127 114 128 | mpsyl | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 130 |  | inss2 | ⊢ ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  ∩  ran  𝑓 | 
						
							| 131 | 108 83 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  𝑓  Fn  ( 𝐼  ∩  𝑊 ) ) | 
						
							| 132 |  | fnfvelrn | ⊢ ( ( 𝑓  Fn  ( 𝐼  ∩  𝑊 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  ran  𝑓 ) | 
						
							| 133 | 131 109 132 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  ran  𝑓 ) | 
						
							| 134 |  | intss1 | ⊢ ( ( 𝑓 ‘ 𝑘 )  ∈  ran  𝑓  →  ∩  ran  𝑓  ⊆  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 135 | 133 134 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ∩  ran  𝑓  ⊆  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 136 | 130 135 | sstrid | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 137 |  | ssralv | ⊢ ( ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  ( 𝑓 ‘ 𝑘 )  →  ( ∀ 𝑥  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( ∀ 𝑥  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 139 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) )  ↔  ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 140 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  →  𝑥  ∈  𝑋 ) | 
						
							| 141 | 140 32 | sylan | ⊢ ( ( 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  ∧  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 142 | 141 | eleq1d | ⊢ ( ( 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  ∧  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 )  ↔  𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 143 | 142 | biimpd | ⊢ ( ( 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  ∧  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 )  →  𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 144 | 143 | expimpd | ⊢ ( 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  →  ( ( 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) )  →  𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 145 | 144 | ralimia | ⊢ ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 146 | 139 145 | sylbir | ⊢ ( ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 147 | 129 138 146 | syl6an | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( ∀ 𝑥  ∈  ( 𝑓 ‘ 𝑘 ) ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  ∈  ( 𝐺 ‘ 𝑘 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 148 | 126 147 | sylbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  ∧  𝐷  ∈  ( 𝑓 ‘ 𝑘 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 149 | 148 | expimpd | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  ∧  𝑘  ∈  ( 𝐼  ∩  𝑊 ) )  →  ( ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 150 | 104 149 | ralimdaa | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽 )  →  ( ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 151 | 150 | impr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 152 |  | simpl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜑 ) | 
						
							| 153 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐼  ∖  𝑊 )  →  𝑘  ∈  𝐼 ) | 
						
							| 154 | 140 31 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  ∧  𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) )  →  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 155 | 154 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐼 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 156 | 152 153 155 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  ( 𝐼  ∖  𝑊 ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 157 |  | eleq2 | ⊢ ( ( 𝐺 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 )  →  ( 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 158 | 157 | ralbidv | ⊢ ( ( 𝐺 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 )  →  ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 159 | 11 158 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  ( 𝐼  ∖  𝑊 ) )  →  ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 160 | 156 159 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑘  ∈  ( 𝐼  ∖  𝑊 ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 161 | 160 | ex | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑘  ∈  ( 𝐼  ∖  𝑊 )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 162 | 17 161 | ralrimi | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑘  ∈  ( 𝐼  ∖  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ( 𝐼  ∖  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 164 |  | inundif | ⊢ ( ( 𝐼  ∩  𝑊 )  ∪  ( 𝐼  ∖  𝑊 ) )  =  𝐼 | 
						
							| 165 | 164 | raleqi | ⊢ ( ∀ 𝑘  ∈  ( ( 𝐼  ∩  𝑊 )  ∪  ( 𝐼  ∖  𝑊 ) ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 166 |  | ralunb | ⊢ ( ∀ 𝑘  ∈  ( ( 𝐼  ∩  𝑊 )  ∪  ( 𝐼  ∖  𝑊 ) ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ( ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ∀ 𝑘  ∈  ( 𝐼  ∖  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 167 | 165 166 | bitr3i | ⊢ ( ∀ 𝑘  ∈  𝐼 ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ( ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ∧  ∀ 𝑘  ∈  ( 𝐼  ∖  𝑊 ) ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 168 | 151 163 167 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  𝐼 ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 169 |  | ralcom | ⊢ ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 170 | 168 169 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 171 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 172 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 ) | 
						
							| 173 | 172 | nfel1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) | 
						
							| 174 |  | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) | 
						
							| 175 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 ) ) | 
						
							| 176 | 175 | eleq1d | ⊢ ( 𝑡  =  𝑥  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 177 | 173 174 176 | cbvralw | ⊢ ( ∀ 𝑡  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 178 |  | mptexg | ⊢ ( 𝐼  ∈  𝑉  →  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V ) | 
						
							| 179 | 140 178 40 | syl2anr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  =  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 180 | 179 | eleq1d | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 181 |  | mptelixpg | ⊢ ( 𝐼  ∈  𝑉  →  ( ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) )  →  ( ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 183 | 180 182 | bitrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 184 | 183 | ralbidva | ⊢ ( 𝐼  ∈  𝑉  →  ( ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑥 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 185 | 177 184 | bitrid | ⊢ ( 𝐼  ∈  𝑉  →  ( ∀ 𝑡  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 186 | 171 185 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( ∀ 𝑡  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑥  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ∀ 𝑘  ∈  𝐼 𝐴  ∈  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 187 | 170 186 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 188 |  | funmpt | ⊢ Fun  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) | 
						
							| 189 | 3 | mptexd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V ) | 
						
							| 190 | 189 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V ) | 
						
							| 191 | 190 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∀ 𝑥  ∈  𝑋 ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V ) | 
						
							| 192 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝑋 ( 𝑘  ∈  𝐼  ↦  𝐴 )  ∈  V  →  dom  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  =  𝑋 ) | 
						
							| 193 | 191 192 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  dom  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  =  𝑋 ) | 
						
							| 194 | 127 193 | sseqtrrid | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ) | 
						
							| 195 |  | funimass4 | ⊢ ( ( Fun  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  ∧  ( 𝑋  ∩  ∩  ran  𝑓 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑡  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 196 | 188 194 195 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ∀ 𝑡  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) ) ‘ 𝑡 )  ∈  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 197 | 187 196 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 198 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑋  ∩  ∩  ran  𝑓 )  →  ( 𝐷  ∈  𝑧  ↔  𝐷  ∈  ( 𝑋  ∩  ∩  ran  𝑓 ) ) ) | 
						
							| 199 |  | imaeq2 | ⊢ ( 𝑧  =  ( 𝑋  ∩  ∩  ran  𝑓 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) ) ) | 
						
							| 200 | 199 | sseq1d | ⊢ ( 𝑧  =  ( 𝑋  ∩  ∩  ran  𝑓 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 201 | 198 200 | anbi12d | ⊢ ( 𝑧  =  ( 𝑋  ∩  ∩  ran  𝑓 )  →  ( ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐷  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 202 | 201 | rspcev | ⊢ ( ( ( 𝑋  ∩  ∩  ran  𝑓 )  ∈  𝐽  ∧  ( 𝐷  ∈  ( 𝑋  ∩  ∩  ran  𝑓 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  ( 𝑋  ∩  ∩  ran  𝑓 ) )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 203 | 92 102 197 202 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑓 : ( 𝐼  ∩  𝑊 ) ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ( 𝐼  ∩  𝑊 ) ( 𝐷  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  ( 𝑓 ‘ 𝑘 ) )  ⊆  ( 𝐺 ‘ 𝑘 ) ) ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 204 | 72 203 | exlimddv | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑘  ∈  𝐼  ↦  𝐴 ) )  “  𝑧 )  ⊆  X 𝑘  ∈  𝐼 ( 𝐺 ‘ 𝑘 ) ) ) |