Step |
Hyp |
Ref |
Expression |
1 |
|
pthd.p |
⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
2 |
|
pthd.r |
⊢ 𝑅 = ( ( ♯ ‘ 𝑃 ) − 1 ) |
3 |
|
pthd.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
4 |
|
pthd.f |
⊢ ( ♯ ‘ 𝐹 ) = 𝑅 |
5 |
|
pthd.t |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
6 |
4 2
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) |
7 |
4
|
oveq2i |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 𝑅 ) |
8 |
7
|
raleqi |
⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
10 |
3 9
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
11 |
1 6 10
|
pthdlem1 |
⊢ ( 𝜑 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
12 |
1 6 10
|
pthdlem2 |
⊢ ( 𝜑 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
13 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
14 |
5 11 12 13
|
syl3anbrc |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |