Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0l |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
2 |
|
simpr |
⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
3 |
|
pthiswlk |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
4 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
5 |
|
1zzd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 ∈ ℤ ) |
6 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
7 |
6
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
8 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 < ( ♯ ‘ 𝐹 ) ) |
9 |
|
fzolb |
⊢ ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 1 < ( ♯ ‘ 𝐹 ) ) ) |
10 |
5 7 8 9
|
syl3anbrc |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
11 |
|
0elfz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
13 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
14 |
13
|
a1i |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → 1 ≠ 0 ) |
15 |
10 12 14
|
3jca |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 < ( ♯ ‘ 𝐹 ) ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) |
16 |
15
|
ex |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) ) |
17 |
3 4 16
|
3syl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) ) |
18 |
17
|
impcom |
⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) |
19 |
|
pthdivtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 1 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 1 ≠ 0 ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
20 |
2 18 19
|
syl2anc |
⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
21 |
20
|
necomd |
⊢ ( ( 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
22 |
21
|
3adant1 |
⊢ ( ( 𝐼 = 0 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
23 |
|
fveq2 |
⊢ ( 𝐼 = 0 → ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ 0 ) ) |
24 |
|
fv0p1e1 |
⊢ ( 𝐼 = 0 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 1 ) ) |
25 |
23 24
|
neeq12d |
⊢ ( 𝐼 = 0 → ( ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐼 = 0 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
27 |
22 26
|
mpbird |
⊢ ( ( 𝐼 = 0 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
28 |
27
|
3exp |
⊢ ( 𝐼 = 0 → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
29 |
|
simp3 |
⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
30 |
|
id |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
31 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
32 |
31
|
sseli |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
33 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
35 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ℤ ) |
36 |
35
|
zcnd |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ∈ ℂ ) |
37 |
|
1cnd |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 1 ∈ ℂ ) |
38 |
13
|
a1i |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 1 ≠ 0 ) |
39 |
36 37 38
|
3jca |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) ) |
40 |
|
addn0nid |
⊢ ( ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → ( 𝐼 + 1 ) ≠ 𝐼 ) |
41 |
40
|
necomd |
⊢ ( ( 𝐼 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → 𝐼 ≠ ( 𝐼 + 1 ) ) |
42 |
39 41
|
syl |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝐼 ≠ ( 𝐼 + 1 ) ) |
43 |
30 34 42
|
3jca |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) |
45 |
|
pthdivtx |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐼 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
46 |
29 44 45
|
syl2anc |
⊢ ( ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
47 |
46
|
3exp |
⊢ ( 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
48 |
28 47
|
jaoi |
⊢ ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
49 |
1 48
|
syl |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 1 < ( ♯ ‘ 𝐹 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
50 |
49
|
3imp31 |
⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ 1 < ( ♯ ‘ 𝐹 ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |