| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzo0l | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | 
						
							| 3 |  | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 5 |  | 1zzd | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  1  ∈  ℤ ) | 
						
							| 6 |  | nn0z | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  1  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 9 |  | fzolb | ⊢ ( 1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 1  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℤ  ∧  1  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 10 | 5 7 8 9 | syl3anbrc | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 |  | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 13 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  1  ≠  0 ) | 
						
							| 15 | 10 12 14 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  ( 1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  1  ≠  0 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  1  ≠  0 ) ) ) | 
						
							| 17 | 3 4 16 | 3syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  1  ≠  0 ) ) ) | 
						
							| 18 | 17 | impcom | ⊢ ( ( 1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  1  ≠  0 ) ) | 
						
							| 19 |  | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ∧  ( 1  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  1  ≠  0 ) )  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 0 ) ) | 
						
							| 20 | 2 18 19 | syl2anc | ⊢ ( ( 1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 0 ) ) | 
						
							| 21 | 20 | necomd | ⊢ ( ( 1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) | 
						
							| 22 | 21 | 3adant1 | ⊢ ( ( 𝐼  =  0  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝐼  =  0  →  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 24 |  | fv0p1e1 | ⊢ ( 𝐼  =  0  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 25 | 23 24 | neeq12d | ⊢ ( 𝐼  =  0  →  ( ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐼  =  0  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) )  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 27 | 22 26 | mpbird | ⊢ ( ( 𝐼  =  0  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 28 | 27 | 3exp | ⊢ ( 𝐼  =  0  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 29 |  | simp3 | ⊢ ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | 
						
							| 30 |  | id | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 31 |  | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 32 | 31 | sseli | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 33 |  | fzofzp1 | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 35 |  | elfzoelz | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 36 | 35 | zcnd | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  ℂ ) | 
						
							| 37 |  | 1cnd | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  1  ∈  ℂ ) | 
						
							| 38 | 13 | a1i | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  1  ≠  0 ) | 
						
							| 39 | 36 37 38 | 3jca | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ≠  0 ) ) | 
						
							| 40 |  | addn0nid | ⊢ ( ( 𝐼  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ≠  0 )  →  ( 𝐼  +  1 )  ≠  𝐼 ) | 
						
							| 41 | 40 | necomd | ⊢ ( ( 𝐼  ∈  ℂ  ∧  1  ∈  ℂ  ∧  1  ≠  0 )  →  𝐼  ≠  ( 𝐼  +  1 ) ) | 
						
							| 42 | 39 41 | syl | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ≠  ( 𝐼  +  1 ) ) | 
						
							| 43 | 30 34 42 | 3jca | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  ( 𝐼  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  ( 𝐼  +  1 ) ) ) | 
						
							| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  ( 𝐼  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  ( 𝐼  +  1 ) ) ) | 
						
							| 45 |  | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ∧  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  ( 𝐼  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  ( 𝐼  +  1 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 46 | 29 44 45 | syl2anc | ⊢ ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 47 | 46 | 3exp | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 48 | 28 47 | jaoi | ⊢ ( ( 𝐼  =  0  ∨  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 49 | 1 48 | syl | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) ) ) | 
						
							| 50 | 49 | 3imp31 | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) |