| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) | 
						
							| 2 |  | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 3 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 | 3 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 |  | elfz0lmr | ⊢ ( 𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( 𝐽  =  0  ∨  𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∨  𝐽  =  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 6 |  | elfzo1 | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝐼  ∈  ℕ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝐼  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 7 |  | nnnn0 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐼  ∈  ℕ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝐼  <  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 9 | 6 8 | sylbi | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 11 |  | fvinim0ffz | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  ↔  ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | 
						
							| 12 | 10 11 | sylan2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  ↔  ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝐽  =  0  →  ( 𝑃 ‘ 𝐽 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝐽  =  0  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  ↔  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 0 ) ) ) | 
						
							| 15 | 14 | ad2antrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  ↔  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 0 ) ) ) | 
						
							| 16 |  | ffun | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  Fun  𝑃 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  Fun  𝑃 ) | 
						
							| 18 |  | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 19 |  | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 20 |  | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝐹 ) ) | 
						
							| 21 | 19 20 | sstri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝐹 ) ) | 
						
							| 22 | 21 | sseli | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 23 |  | eleq2 | ⊢ ( dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  dom  𝑃  ↔  𝐼  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 24 | 22 23 | imbitrrid | ⊢ ( dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  dom  𝑃 ) ) | 
						
							| 25 | 18 24 | syl | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  𝐼  ∈  dom  𝑃 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝐼  ∈  dom  𝑃 ) | 
						
							| 27 | 17 26 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( Fun  𝑃  ∧  𝐼  ∈  dom  𝑃 ) ) | 
						
							| 28 | 27 | adantrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( Fun  𝑃  ∧  𝐼  ∈  dom  𝑃 ) ) | 
						
							| 29 |  | simprr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 30 |  | funfvima | ⊢ ( ( Fun  𝑃  ∧  𝐼  ∈  dom  𝑃 )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑃 ‘ 𝐼 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 31 | 28 29 30 | sylc | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ 𝐼 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 32 |  | eleq1 | ⊢ ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝑃 ‘ 𝐼 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ↔  ( 𝑃 ‘ 0 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 33 | 31 32 | syl5ibcom | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ 0 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 34 | 15 33 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  →  ( 𝑃 ‘ 0 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 35 |  | nnel | ⊢ ( ¬  ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ↔  ( 𝑃 ‘ 0 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 36 | 34 35 | imbitrrdi | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  →  ¬  ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 37 | 36 | necon2ad | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 38 | 37 | adantrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 39 | 12 38 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 41 | 40 | com23 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 42 | 41 | a1d | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 43 | 42 | 3imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 44 | 43 | com12 | ⊢ ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 45 | 44 | a1d | ⊢ ( ( 𝐽  =  0  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 46 | 45 | ex | ⊢ ( 𝐽  =  0  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 47 |  | fvres | ⊢ ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ 𝐼 )  =  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 ) ) | 
						
							| 51 |  | fvres | ⊢ ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 )  =  ( 𝑃 ‘ 𝐽 ) ) | 
						
							| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 )  =  ( 𝑃 ‘ 𝐽 ) ) | 
						
							| 53 | 52 | eqcomd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ 𝐽 )  =  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) ) | 
						
							| 54 | 50 53 | eqeq12d | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  ↔  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 )  =  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 ) ) ) | 
						
							| 55 |  | fssres | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 56 | 21 55 | mpan2 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 57 |  | df-f1 | ⊢ ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 )  ↔  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 58 | 57 | biimpri | ⊢ ( ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) | 
						
							| 59 | 56 58 | sylan | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) | 
						
							| 60 | 59 | 3adant3 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 62 | 61 | ancomd | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 63 |  | f1veqaeq | ⊢ ( ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 1 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 )  ∧  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 )  =  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 )  →  𝐼  =  𝐽 ) ) | 
						
							| 64 | 60 62 63 | syl2an2r | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐼 )  =  ( ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝐽 )  →  𝐼  =  𝐽 ) ) | 
						
							| 65 | 54 64 | sylbid | ⊢ ( ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  →  𝐼  =  𝐽 ) ) | 
						
							| 66 | 65 | ancoms | ⊢ ( ( ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  →  𝐼  =  𝐽 ) ) | 
						
							| 67 | 66 | necon3d | ⊢ ( ( ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) )  →  ( 𝐼  ≠  𝐽  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 68 | 67 | ex | ⊢ ( ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝐼  ≠  𝐽  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 69 | 68 | com23 | ⊢ ( ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 71 | 9 | adantl | ⊢ ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 72 | 71 11 | sylan2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  ↔  ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝐽  =  ( ♯ ‘ 𝐹 )  →  ( 𝑃 ‘ 𝐽 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 74 | 73 | eqeq2d | ⊢ ( 𝐽  =  ( ♯ ‘ 𝐹 )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  ↔  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 75 | 74 | ad2antrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  ↔  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 76 | 27 | adantrl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( Fun  𝑃  ∧  𝐼  ∈  dom  𝑃 ) ) | 
						
							| 77 |  | simprr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 78 | 76 77 30 | sylc | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ 𝐼 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 79 |  | eleq1 | ⊢ ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑃 ‘ 𝐼 )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ↔  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 80 | 78 79 | syl5ibcom | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 81 | 75 80 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 82 |  | nnel | ⊢ ( ¬  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ↔  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 83 | 81 82 | imbitrrdi | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ 𝐽 )  →  ¬  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 84 | 83 | necon2ad | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 85 | 84 | adantld | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∉  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 86 | 72 85 | sylbid | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 88 | 87 | com23 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 89 | 88 | a1d | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 90 | 89 | 3imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 91 | 90 | com12 | ⊢ ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 92 | 91 | a1d | ⊢ ( ( 𝐽  =  ( ♯ ‘ 𝐹 )  ∧  𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) | 
						
							| 93 | 92 | ex | ⊢ ( 𝐽  =  ( ♯ ‘ 𝐹 )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 94 | 46 70 93 | 3jaoi | ⊢ ( ( 𝐽  =  0  ∨  𝐽  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∨  𝐽  =  ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 95 | 5 94 | syl | ⊢ ( 𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼  ≠  𝐽  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 96 | 95 | 3imp21 | ⊢ ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 )  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 97 | 96 | com12 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 98 | 97 | 3exp | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 99 | 2 4 98 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) ) ) | 
						
							| 100 | 99 | 3imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 101 | 1 100 | sylbi | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) ) | 
						
							| 102 | 101 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ∧  ( 𝐼  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝐽  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ∧  𝐼  ≠  𝐽 ) )  →  ( 𝑃 ‘ 𝐼 )  ≠  ( 𝑃 ‘ 𝐽 ) ) |