Step |
Hyp |
Ref |
Expression |
1 |
|
pthd.p |
⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
2 |
|
pthd.r |
⊢ 𝑅 = ( ( ♯ ‘ 𝑃 ) − 1 ) |
3 |
|
pthd.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
4 |
|
lencl |
⊢ ( 𝑃 ∈ Word V → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
5 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑃 ) ≠ 0 ↔ ¬ ( ♯ ‘ 𝑃 ) = 0 ) |
6 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ≠ 0 ) ) |
7 |
6
|
simplbi2 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ≠ 0 → ( ♯ ‘ 𝑃 ) ∈ ℕ ) ) |
8 |
5 7
|
syl5bir |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑃 ) = 0 → ( ♯ ‘ 𝑃 ) ∈ ℕ ) ) |
9 |
1 4 8
|
3syl |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝑃 ) = 0 → ( ♯ ‘ 𝑃 ) ∈ ℕ ) ) |
10 |
|
eqid |
⊢ 0 = 0 |
11 |
10
|
orci |
⊢ ( 0 = 0 ∨ 0 = 𝑅 ) |
12 |
1 2 3
|
pthdlem2lem |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 0 = 0 ∨ 0 = 𝑅 ) ) → ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |
13 |
11 12
|
mp3an3 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |
14 |
|
eqid |
⊢ 𝑅 = 𝑅 |
15 |
14
|
olci |
⊢ ( 𝑅 = 0 ∨ 𝑅 = 𝑅 ) |
16 |
1 2 3
|
pthdlem2lem |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝑅 = 0 ∨ 𝑅 = 𝑅 ) ) → ( 𝑃 ‘ 𝑅 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |
17 |
15 16
|
mp3an3 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → ( 𝑃 ‘ 𝑅 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |
18 |
|
wrdffz |
⊢ ( 𝑃 ∈ Word V → 𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ V ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ V ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → 𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ V ) |
21 |
2
|
oveq2i |
⊢ ( 0 ... 𝑅 ) = ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
22 |
21
|
feq2i |
⊢ ( 𝑃 : ( 0 ... 𝑅 ) ⟶ V ↔ 𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ V ) |
23 |
20 22
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → 𝑃 : ( 0 ... 𝑅 ) ⟶ V ) |
24 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
25 |
2 24
|
eqeltrid |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → 𝑅 ∈ ℕ0 ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → 𝑅 ∈ ℕ0 ) |
27 |
|
fvinim0ffz |
⊢ ( ( 𝑃 : ( 0 ... 𝑅 ) ⟶ V ∧ 𝑅 ∈ ℕ0 ) → ( ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ∧ ( 𝑃 ‘ 𝑅 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) ) ) |
28 |
23 26 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → ( ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ∧ ( 𝑃 ‘ 𝑅 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) ) ) |
29 |
13 17 28
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ) → ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ) |
30 |
29
|
ex |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ) ) |
31 |
9 30
|
syld |
⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝑃 ) = 0 → ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ) ) |
32 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( 0 − 1 ) ) |
33 |
2 32
|
syl5eq |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → 𝑅 = ( 0 − 1 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( 1 ..^ 𝑅 ) = ( 1 ..^ ( 0 − 1 ) ) ) |
35 |
|
0le2 |
⊢ 0 ≤ 2 |
36 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
37 |
35 36
|
breqtrri |
⊢ 0 ≤ ( 1 + 1 ) |
38 |
|
0re |
⊢ 0 ∈ ℝ |
39 |
|
1re |
⊢ 1 ∈ ℝ |
40 |
38 39 39
|
lesubadd2i |
⊢ ( ( 0 − 1 ) ≤ 1 ↔ 0 ≤ ( 1 + 1 ) ) |
41 |
37 40
|
mpbir |
⊢ ( 0 − 1 ) ≤ 1 |
42 |
|
1z |
⊢ 1 ∈ ℤ |
43 |
|
0z |
⊢ 0 ∈ ℤ |
44 |
|
peano2zm |
⊢ ( 0 ∈ ℤ → ( 0 − 1 ) ∈ ℤ ) |
45 |
43 44
|
ax-mp |
⊢ ( 0 − 1 ) ∈ ℤ |
46 |
|
fzon |
⊢ ( ( 1 ∈ ℤ ∧ ( 0 − 1 ) ∈ ℤ ) → ( ( 0 − 1 ) ≤ 1 ↔ ( 1 ..^ ( 0 − 1 ) ) = ∅ ) ) |
47 |
42 45 46
|
mp2an |
⊢ ( ( 0 − 1 ) ≤ 1 ↔ ( 1 ..^ ( 0 − 1 ) ) = ∅ ) |
48 |
41 47
|
mpbi |
⊢ ( 1 ..^ ( 0 − 1 ) ) = ∅ |
49 |
34 48
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( 1 ..^ 𝑅 ) = ∅ ) |
50 |
49
|
imaeq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( 𝑃 “ ( 1 ..^ 𝑅 ) ) = ( 𝑃 “ ∅ ) ) |
51 |
|
ima0 |
⊢ ( 𝑃 “ ∅ ) = ∅ |
52 |
50 51
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( 𝑃 “ ( 1 ..^ 𝑅 ) ) = ∅ ) |
53 |
52
|
ineq2d |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ∅ ) ) |
54 |
|
in0 |
⊢ ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ∅ ) = ∅ |
55 |
53 54
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ) |
56 |
31 55
|
pm2.61d2 |
⊢ ( 𝜑 → ( ( 𝑃 “ { 0 , 𝑅 } ) ∩ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) = ∅ ) |