Step |
Hyp |
Ref |
Expression |
1 |
|
pthd.p |
⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
2 |
|
pthd.r |
⊢ 𝑅 = ( ( ♯ ‘ 𝑃 ) − 1 ) |
3 |
|
pthd.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
5 |
|
ralcom |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
6 |
|
elfzo1 |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝑅 ) ↔ ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅 ) ) |
7 |
|
nnne0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ≠ 0 ) |
8 |
7
|
necomd |
⊢ ( 𝑗 ∈ ℕ → 0 ≠ 𝑗 ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅 ) → 0 ≠ 𝑗 ) |
10 |
6 9
|
sylbi |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 0 ≠ 𝑗 ) |
11 |
10
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → 0 ≠ 𝑗 ) |
12 |
|
neeq1 |
⊢ ( 𝐼 = 0 → ( 𝐼 ≠ 𝑗 ↔ 0 ≠ 𝑗 ) ) |
13 |
11 12
|
syl5ibr |
⊢ ( 𝐼 = 0 → ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → 𝐼 ≠ 𝑗 ) ) |
14 |
13
|
expd |
⊢ ( 𝐼 = 0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 𝐼 ≠ 𝑗 ) ) ) |
15 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ) → 𝑗 ∈ ℝ ) |
17 |
|
nnre |
⊢ ( 𝑅 ∈ ℕ → 𝑅 ∈ ℝ ) |
18 |
17
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ) → 𝑅 ∈ ℝ ) |
19 |
16 18
|
ltlend |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ) → ( 𝑗 < 𝑅 ↔ ( 𝑗 ≤ 𝑅 ∧ 𝑅 ≠ 𝑗 ) ) ) |
20 |
|
simpr |
⊢ ( ( 𝑗 ≤ 𝑅 ∧ 𝑅 ≠ 𝑗 ) → 𝑅 ≠ 𝑗 ) |
21 |
19 20
|
syl6bi |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ) → ( 𝑗 < 𝑅 → 𝑅 ≠ 𝑗 ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅 ) → 𝑅 ≠ 𝑗 ) |
23 |
6 22
|
sylbi |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 𝑅 ≠ 𝑗 ) |
24 |
23
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → 𝑅 ≠ 𝑗 ) |
25 |
|
neeq1 |
⊢ ( 𝐼 = 𝑅 → ( 𝐼 ≠ 𝑗 ↔ 𝑅 ≠ 𝑗 ) ) |
26 |
24 25
|
syl5ibr |
⊢ ( 𝐼 = 𝑅 → ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → 𝐼 ≠ 𝑗 ) ) |
27 |
26
|
expd |
⊢ ( 𝐼 = 𝑅 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 𝐼 ≠ 𝑗 ) ) ) |
28 |
14 27
|
jaoi |
⊢ ( ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 𝐼 ≠ 𝑗 ) ) ) |
29 |
28
|
impcom |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 𝐼 ≠ 𝑗 ) ) |
30 |
29
|
3adant1 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ( 𝑗 ∈ ( 1 ..^ 𝑅 ) → 𝐼 ≠ 𝑗 ) ) |
31 |
30
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → 𝐼 ≠ 𝑗 ) |
32 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ↔ ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
33 |
32
|
biimpri |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
34 |
|
eleq1 |
⊢ ( 𝐼 = 0 → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ↔ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) ) |
35 |
33 34
|
syl5ibr |
⊢ ( 𝐼 = 0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) ) |
36 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
37 |
2 36
|
eqeltrid |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → 𝑅 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
38 |
|
eleq1 |
⊢ ( 𝐼 = 𝑅 → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ↔ 𝑅 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) ) |
39 |
37 38
|
syl5ibr |
⊢ ( 𝐼 = 𝑅 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) ) |
40 |
35 39
|
jaoi |
⊢ ( ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) ) |
41 |
40
|
impcom |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
42 |
41
|
3adant1 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
44 |
|
neeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ≠ 𝑗 ↔ 𝐼 ≠ 𝑗 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝐼 ) ) |
46 |
45
|
neeq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
47 |
44 46
|
imbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝐼 ≠ 𝑗 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) ) |
48 |
47
|
rspcv |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) → ( 𝐼 ≠ 𝑗 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) ) |
49 |
43 48
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) → ( 𝐼 ≠ 𝑗 → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) ) |
50 |
31 49
|
mpid |
⊢ ( ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) → ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
51 |
|
nesym |
⊢ ( ( 𝑃 ‘ 𝐼 ) ≠ ( 𝑃 ‘ 𝑗 ) ↔ ¬ ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) |
52 |
50 51
|
syl6ib |
⊢ ( ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) ∧ 𝑗 ∈ ( 1 ..^ 𝑅 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) → ¬ ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) ) |
53 |
52
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ( ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ¬ ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) ) |
54 |
5 53
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑖 ≠ 𝑗 → ( 𝑃 ‘ 𝑖 ) ≠ ( 𝑃 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ¬ ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) ) |
55 |
4 54
|
mpd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ¬ ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) |
56 |
|
ralnex |
⊢ ( ∀ 𝑗 ∈ ( 1 ..^ 𝑅 ) ¬ ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ↔ ¬ ∃ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) |
57 |
55 56
|
sylib |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ¬ ∃ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) |
58 |
|
wrdf |
⊢ ( 𝑃 ∈ Word V → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ) |
59 |
|
ffun |
⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V → Fun 𝑃 ) |
60 |
1 58 59
|
3syl |
⊢ ( 𝜑 → Fun 𝑃 ) |
61 |
60
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → Fun 𝑃 ) |
62 |
|
fvelima |
⊢ ( ( Fun 𝑃 ∧ ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) → ∃ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) |
63 |
62
|
ex |
⊢ ( Fun 𝑃 → ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) → ∃ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) ) |
64 |
61 63
|
syl |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ( ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) → ∃ 𝑗 ∈ ( 1 ..^ 𝑅 ) ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐼 ) ) ) |
65 |
57 64
|
mtod |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ¬ ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |
66 |
|
df-nel |
⊢ ( ( 𝑃 ‘ 𝐼 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ↔ ¬ ( 𝑃 ‘ 𝐼 ) ∈ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |
67 |
65 66
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ ( 𝐼 = 0 ∨ 𝐼 = 𝑅 ) ) → ( 𝑃 ‘ 𝐼 ) ∉ ( 𝑃 “ ( 1 ..^ 𝑅 ) ) ) |