Metamath Proof Explorer


Theorem pthsonfval

Description: The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis pthsonfval.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion pthsonfval ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } )

Proof

Step Hyp Ref Expression
1 pthsonfval.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 1vgrex ( 𝐴𝑉𝐺 ∈ V )
3 2 adantr ( ( 𝐴𝑉𝐵𝑉 ) → 𝐺 ∈ V )
4 simpl ( ( 𝐴𝑉𝐵𝑉 ) → 𝐴𝑉 )
5 4 1 eleqtrdi ( ( 𝐴𝑉𝐵𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) )
6 simpr ( ( 𝐴𝑉𝐵𝑉 ) → 𝐵𝑉 )
7 6 1 eleqtrdi ( ( 𝐴𝑉𝐵𝑉 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) )
8 wksv { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V
9 8 a1i ( ( 𝐴𝑉𝐵𝑉 ) → { ⟨ 𝑓 , 𝑝 ⟩ ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V )
10 pthiswlk ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝𝑓 ( Walks ‘ 𝐺 ) 𝑝 )
11 10 adantl ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 )
12 df-pthson PathsOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( 𝑎 ( TrailsOn ‘ 𝑔 ) 𝑏 ) 𝑝𝑓 ( Paths ‘ 𝑔 ) 𝑝 ) } ) )
13 3 5 7 9 11 12 mptmpoopabovd ( ( 𝐴𝑉𝐵𝑉 ) → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } )