| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptpjcn.1 | ⊢ 𝑌  =  ∪  𝐽 | 
						
							| 2 |  | ptpjcn.2 | ⊢ 𝐽  =  ( ∏t ‘ 𝐹 ) | 
						
							| 3 | 2 | ptuni | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐽 ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐽 ) | 
						
							| 5 | 1 4 | eqtr4id | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  𝑌  =  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 6 | 5 | mpteq1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  =  ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 7 |  | pttop | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 9 | 2 8 | eqeltrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  𝐽  ∈  Top ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝐹 ‘ 𝐼 )  ∈  Top ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝐹 ‘ 𝐼 )  ∈  Top ) | 
						
							| 12 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 13 | 12 | elixp | ⊢ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↔  ( 𝑥  Fn  𝐴  ∧  ∀ 𝑘  ∈  𝐴 ( 𝑥 ‘ 𝑘 )  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 14 | 13 | simprbi | ⊢ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  →  ∀ 𝑘  ∈  𝐴 ( 𝑥 ‘ 𝑘 )  ∈  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑘  =  𝐼  →  ( 𝑥 ‘ 𝑘 )  =  ( 𝑥 ‘ 𝐼 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑘  =  𝐼  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 17 | 16 | unieqd | ⊢ ( 𝑘  =  𝐼  →  ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 18 | 15 17 | eleq12d | ⊢ ( 𝑘  =  𝐼  →  ( ( 𝑥 ‘ 𝑘 )  ∈  ∪  ( 𝐹 ‘ 𝑘 )  ↔  ( 𝑥 ‘ 𝐼 )  ∈  ∪  ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 19 | 18 | rspcva | ⊢ ( ( 𝐼  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 ( 𝑥 ‘ 𝑘 )  ∈  ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑥 ‘ 𝐼 )  ∈  ∪  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 20 | 14 19 | sylan2 | ⊢ ( ( 𝐼  ∈  𝐴  ∧  𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑥 ‘ 𝐼 )  ∈  ∪  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 21 | 20 | 3ad2antl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑥 ‘ 𝐼 )  ∈  ∪  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 22 | 21 | fmpttd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) : X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ⟶ ∪  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 23 | 5 | feq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪  ( 𝐹 ‘ 𝐼 )  ↔  ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) : X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ⟶ ∪  ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 24 | 22 23 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 25 |  | eqid | ⊢ { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 26 | 25 | ptbas | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ∈  TopBases ) | 
						
							| 27 |  | bastg | ⊢ ( { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ∈  TopBases  →  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  ( topGen ‘ { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  ( topGen ‘ { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 29 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top  →  𝐹  Fn  𝐴 ) | 
						
							| 30 | 25 | ptval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 31 | 2 30 | eqtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  𝐽  =  ( topGen ‘ { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 32 | 29 31 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐽  =  ( topGen ‘ { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 33 | 28 32 | sseqtrrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  𝐽 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  𝐽 ) | 
						
							| 35 |  | eqid | ⊢ X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) | 
						
							| 36 | 25 35 | ptpjpre2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  { 𝑤  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 37 | 34 36 | sseldd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 38 | 37 | expr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  𝐼  ∈  𝐴 )  →  ( 𝑢  ∈  ( 𝐹 ‘ 𝐼 )  →  ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  𝐽 ) ) | 
						
							| 39 | 38 | ralrimiv | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  𝐼  ∈  𝐴 )  →  ∀ 𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 40 | 39 | 3impa | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ∀ 𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 41 | 24 40 | jca | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪  ( 𝐹 ‘ 𝐼 )  ∧  ∀ 𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  𝐽 ) ) | 
						
							| 42 |  | eqid | ⊢ ∪  ( 𝐹 ‘ 𝐼 )  =  ∪  ( 𝐹 ‘ 𝐼 ) | 
						
							| 43 | 1 42 | iscn2 | ⊢ ( ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝐼 ) )  ↔  ( ( 𝐽  ∈  Top  ∧  ( 𝐹 ‘ 𝐼 )  ∈  Top )  ∧  ( ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪  ( 𝐹 ‘ 𝐼 )  ∧  ∀ 𝑢  ∈  ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑢 )  ∈  𝐽 ) ) ) | 
						
							| 44 | 9 11 41 43 | syl21anbrc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↦  ( 𝑥 ‘ 𝐼 ) )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 45 | 6 44 | eqeltrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝐼 ) ) ) |