| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptpjcn.1 | ⊢ 𝑌  =  ∪  𝐽 | 
						
							| 2 |  | ptpjcn.2 | ⊢ 𝐽  =  ( ∏t ‘ 𝐹 ) | 
						
							| 3 |  | df-ima | ⊢ ( ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑈 )  =  ran  ( ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  ↾  𝑈 ) | 
						
							| 4 |  | elssuni | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 5 | 4 1 | sseqtrrdi | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  𝑌 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  𝑈  ⊆  𝑌 ) | 
						
							| 7 | 6 | resmptd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ( ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  ↾  𝑈 )  =  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 8 | 7 | rneqd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ran  ( ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  ↾  𝑈 )  =  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 9 | 3 8 | eqtrid | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ( ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑈 )  =  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 10 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top  →  𝐹  Fn  𝐴 ) | 
						
							| 11 |  | eqid | ⊢ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 12 | 11 | ptval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 13 | 10 12 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 14 | 2 13 | eqtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐽  =  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  𝐽  =  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 16 | 15 | eleq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  →  ( 𝑈  ∈  𝐽  ↔  𝑈  ∈  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) ) | 
						
							| 17 | 16 | biimpa | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  𝑈  ∈  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 18 |  | tg2 | ⊢ ( ( 𝑈  ∈  ( topGen ‘ { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } )  ∧  𝑠  ∈  𝑈 )  →  ∃ 𝑤  ∈  { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 ) ) | 
						
							| 19 | 17 18 | sylan | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  ∃ 𝑤  ∈  { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 ) ) | 
						
							| 20 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 21 |  | eqeq1 | ⊢ ( 𝑠  =  𝑤  →  ( 𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ↔  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( 𝑠  =  𝑤  →  ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ↔  ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) | 
						
							| 23 | 22 | exbidv | ⊢ ( 𝑠  =  𝑤  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  ↔  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) ) | 
						
							| 24 | 20 23 | elab | ⊢ ( 𝑤  ∈  { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ↔  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑦  =  𝐼  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝑔 ‘ 𝐼 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑦  =  𝐼  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 27 | 25 26 | eleq12d | ⊢ ( 𝑦  =  𝐼  →  ( ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝑔 ‘ 𝐼 )  ∈  ( 𝐹 ‘ 𝐼 ) ) ) | 
						
							| 28 |  | simplr2 | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 29 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  𝐼  ∈  𝐴 ) | 
						
							| 30 | 29 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  𝐼  ∈  𝐴 ) | 
						
							| 31 | 27 28 30 | rspcdva | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ( 𝑔 ‘ 𝐼 )  ∈  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑦  =  𝐼  →  ( 𝑠 ‘ 𝑦 )  =  ( 𝑠 ‘ 𝐼 ) ) | 
						
							| 33 | 32 25 | eleq12d | ⊢ ( 𝑦  =  𝐼  →  ( ( 𝑠 ‘ 𝑦 )  ∈  ( 𝑔 ‘ 𝑦 )  ↔  ( 𝑠 ‘ 𝐼 )  ∈  ( 𝑔 ‘ 𝐼 ) ) ) | 
						
							| 34 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 35 | 34 | elixp | ⊢ ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ↔  ( 𝑠  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑠 ‘ 𝑦 )  ∈  ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 36 | 35 | simprbi | ⊢ ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ∀ 𝑦  ∈  𝐴 ( 𝑠 ‘ 𝑦 )  ∈  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 37 | 36 | ad2antrl | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑠 ‘ 𝑦 )  ∈  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 38 | 33 37 30 | rspcdva | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ( 𝑠 ‘ 𝐼 )  ∈  ( 𝑔 ‘ 𝐼 ) ) | 
						
							| 39 |  | simplrr | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) | 
						
							| 40 |  | simplrl | ⊢ ( ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  ∧  𝑛  =  𝐼 )  →  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑛  =  𝐼  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝐼 ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  ∧  𝑛  =  𝐼 )  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝐼 ) ) | 
						
							| 43 | 40 42 | eleqtrrd | ⊢ ( ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  ∧  𝑛  =  𝐼 )  →  𝑘  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑠 ‘ 𝑦 )  =  ( 𝑠 ‘ 𝑛 ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 46 | 44 45 | eleq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑠 ‘ 𝑦 )  ∈  ( 𝑔 ‘ 𝑦 )  ↔  ( 𝑠 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 47 |  | simplrl | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  →  𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 48 | 47 36 | syl | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑠 ‘ 𝑦 )  ∈  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 49 |  | simprr | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  →  𝑛  ∈  𝐴 ) | 
						
							| 50 | 46 48 49 | rspcdva | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  →  ( 𝑠 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  ∧  ¬  𝑛  =  𝐼 )  →  ( 𝑠 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 52 | 43 51 | ifclda | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  ∧  𝑛  ∈  𝐴 ) )  →  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 53 | 52 | anassrs | ⊢ ( ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  ∧  𝑛  ∈  𝐴 )  →  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ∀ 𝑛  ∈  𝐴 if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 55 |  | simpll1 | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  𝐴  ∈  𝑉 ) | 
						
							| 56 | 55 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 57 |  | mptelixpg | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  ∈  X 𝑛  ∈  𝐴 ( 𝑔 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐴 if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) )  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  ∈  X 𝑛  ∈  𝐴 ( 𝑔 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐴 if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) )  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 59 | 54 58 | mpbird | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  ∈  X 𝑛  ∈  𝐴 ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 61 | 60 | cbvixpv | ⊢ X 𝑛  ∈  𝐴 ( 𝑔 ‘ 𝑛 )  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) | 
						
							| 62 | 59 61 | eleqtrdi | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 63 | 39 62 | sseldd | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  ∈  𝑈 ) | 
						
							| 64 | 30 | adantr | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  𝐼  ∈  𝐴 ) | 
						
							| 65 |  | iftrue | ⊢ ( 𝑛  =  𝐼  →  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) )  =  𝑘 ) | 
						
							| 66 |  | eqid | ⊢ ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) ) | 
						
							| 67 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 68 | 65 66 67 | fvmpt | ⊢ ( 𝐼  ∈  𝐴  →  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 )  =  𝑘 ) | 
						
							| 69 | 64 68 | syl | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 )  =  𝑘 ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  𝑘  =  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) | 
						
							| 71 |  | fveq1 | ⊢ ( 𝑥  =  ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  →  ( 𝑥 ‘ 𝐼 )  =  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) ) | 
						
							| 72 | 71 | rspceeqv | ⊢ ( ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) )  ∈  𝑈  ∧  𝑘  =  ( ( 𝑛  ∈  𝐴  ↦  if ( 𝑛  =  𝐼 ,  𝑘 ,  ( 𝑠 ‘ 𝑛 ) ) ) ‘ 𝐼 ) )  →  ∃ 𝑥  ∈  𝑈 𝑘  =  ( 𝑥 ‘ 𝐼 ) ) | 
						
							| 73 | 63 70 72 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  ∃ 𝑥  ∈  𝑈 𝑘  =  ( 𝑥 ‘ 𝐼 ) ) | 
						
							| 74 |  | eqid | ⊢ ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  =  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) | 
						
							| 75 | 74 | elrnmpt | ⊢ ( 𝑘  ∈  V  →  ( 𝑘  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  ↔  ∃ 𝑥  ∈  𝑈 𝑘  =  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 76 | 75 | elv | ⊢ ( 𝑘  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  ↔  ∃ 𝑥  ∈  𝑈 𝑘  =  ( 𝑥 ‘ 𝐼 ) ) | 
						
							| 77 | 73 76 | sylibr | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  ∧  𝑘  ∈  ( 𝑔 ‘ 𝐼 ) )  →  𝑘  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 78 | 77 | ex | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ( 𝑘  ∈  ( 𝑔 ‘ 𝐼 )  →  𝑘  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 79 | 78 | ssrdv | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ( 𝑔 ‘ 𝐼 )  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) | 
						
							| 80 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑔 ‘ 𝐼 )  →  ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ↔  ( 𝑠 ‘ 𝐼 )  ∈  ( 𝑔 ‘ 𝐼 ) ) ) | 
						
							| 81 |  | sseq1 | ⊢ ( 𝑧  =  ( 𝑔 ‘ 𝐼 )  →  ( 𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  ↔  ( 𝑔 ‘ 𝐼 )  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 82 | 80 81 | anbi12d | ⊢ ( 𝑧  =  ( 𝑔 ‘ 𝐼 )  →  ( ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) )  ↔  ( ( 𝑠 ‘ 𝐼 )  ∈  ( 𝑔 ‘ 𝐼 )  ∧  ( 𝑔 ‘ 𝐼 )  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 83 | 82 | rspcev | ⊢ ( ( ( 𝑔 ‘ 𝐼 )  ∈  ( 𝐹 ‘ 𝐼 )  ∧  ( ( 𝑠 ‘ 𝐼 )  ∈  ( 𝑔 ‘ 𝐼 )  ∧  ( 𝑔 ‘ 𝐼 )  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 84 | 31 38 79 83 | syl12anc | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  ∧  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 86 |  | eleq2 | ⊢ ( 𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( 𝑠  ∈  𝑤  ↔  𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 87 |  | sseq1 | ⊢ ( 𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( 𝑤  ⊆  𝑈  ↔  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) ) | 
						
							| 88 | 86 87 | anbi12d | ⊢ ( 𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  ↔  ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 ) ) ) | 
						
							| 89 | 88 | imbi1d | ⊢ ( 𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) )  ↔  ( ( 𝑠  ∈  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∧  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 90 | 85 89 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 91 | 90 | expimpd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 92 | 91 | exlimdv | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑤  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 93 | 24 92 | biimtrid | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  ( 𝑤  ∈  { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  →  ( ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) ) | 
						
							| 94 | 93 | rexlimdv | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  ( ∃ 𝑤  ∈  { 𝑠  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑠  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( 𝑠  ∈  𝑤  ∧  𝑤  ⊆  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 95 | 19 94 | mpd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  ∧  𝑠  ∈  𝑈 )  →  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 96 | 95 | ralrimiva | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ∀ 𝑠  ∈  𝑈 ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 97 |  | fvex | ⊢ ( 𝑠 ‘ 𝐼 )  ∈  V | 
						
							| 98 | 97 | rgenw | ⊢ ∀ 𝑠  ∈  𝑈 ( 𝑠 ‘ 𝐼 )  ∈  V | 
						
							| 99 |  | fveq1 | ⊢ ( 𝑥  =  𝑠  →  ( 𝑥 ‘ 𝐼 )  =  ( 𝑠 ‘ 𝐼 ) ) | 
						
							| 100 | 99 | cbvmptv | ⊢ ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  =  ( 𝑠  ∈  𝑈  ↦  ( 𝑠 ‘ 𝐼 ) ) | 
						
							| 101 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑠 ‘ 𝐼 )  →  ( 𝑦  ∈  𝑧  ↔  ( 𝑠 ‘ 𝐼 )  ∈  𝑧 ) ) | 
						
							| 102 | 101 | anbi1d | ⊢ ( 𝑦  =  ( 𝑠 ‘ 𝐼 )  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) )  ↔  ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 103 | 102 | rexbidv | ⊢ ( 𝑦  =  ( 𝑠 ‘ 𝐼 )  →  ( ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) )  ↔  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 104 | 100 103 | ralrnmptw | ⊢ ( ∀ 𝑠  ∈  𝑈 ( 𝑠 ‘ 𝐼 )  ∈  V  →  ( ∀ 𝑦  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) )  ↔  ∀ 𝑠  ∈  𝑈 ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 105 | 98 104 | ax-mp | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) )  ↔  ∀ 𝑠  ∈  𝑈 ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( ( 𝑠 ‘ 𝐼 )  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 106 | 96 105 | sylibr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ∀ 𝑦  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) | 
						
							| 107 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 108 | 107 29 | ffvelcdmd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ( 𝐹 ‘ 𝐼 )  ∈  Top ) | 
						
							| 109 |  | eltop2 | ⊢ ( ( 𝐹 ‘ 𝐼 )  ∈  Top  →  ( ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  ∈  ( 𝐹 ‘ 𝐼 )  ↔  ∀ 𝑦  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 110 | 108 109 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ( ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  ∈  ( 𝐹 ‘ 𝐼 )  ↔  ∀ 𝑦  ∈  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ∃ 𝑧  ∈  ( 𝐹 ‘ 𝐼 ) ( 𝑦  ∈  𝑧  ∧  𝑧  ⊆  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) ) ) ) ) | 
						
							| 111 | 106 110 | mpbird | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ran  ( 𝑥  ∈  𝑈  ↦  ( 𝑥 ‘ 𝐼 ) )  ∈  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 112 | 9 111 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐼  ∈  𝐴 )  ∧  𝑈  ∈  𝐽 )  →  ( ( 𝑥  ∈  𝑌  ↦  ( 𝑥 ‘ 𝐼 ) )  “  𝑈 )  ∈  ( 𝐹 ‘ 𝐼 ) ) |