Step |
Hyp |
Ref |
Expression |
1 |
|
ptpjpre1.1 |
⊢ 𝑋 = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) |
2 |
|
fveq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝐼 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐼 ) ) |
4 |
3
|
unieqd |
⊢ ( 𝑘 = 𝐼 → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝐼 ) ) |
5 |
2 4
|
eleq12d |
⊢ ( 𝑘 = 𝐼 → ( ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑤 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) ) |
6 |
|
vex |
⊢ 𝑤 ∈ V |
7 |
6
|
elixp |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑤 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑤 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
9 |
8 1
|
eleq2s |
⊢ ( 𝑤 ∈ 𝑋 → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑤 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
11 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐼 ∈ 𝐴 ) |
12 |
5 10 11
|
rspcdva |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) |
13 |
12
|
fmpttd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ) |
14 |
|
ffn |
⊢ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) Fn 𝑋 ) |
15 |
|
elpreima |
⊢ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) Fn 𝑋 → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ) ) |
16 |
13 14 15
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ) ) |
17 |
|
fveq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ‘ 𝐼 ) = ( 𝑧 ‘ 𝐼 ) ) |
18 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) |
19 |
|
fvex |
⊢ ( 𝑧 ‘ 𝐼 ) ∈ V |
20 |
17 18 19
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) = ( 𝑧 ‘ 𝐼 ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑧 ∈ 𝑋 → ( ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ↔ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
22 |
21
|
pm5.32i |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
23 |
1
|
eleq2i |
⊢ ( 𝑧 ∈ 𝑋 ↔ 𝑧 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
24 |
|
vex |
⊢ 𝑧 ∈ V |
25 |
24
|
elixp |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
26 |
23 25
|
bitri |
⊢ ( 𝑧 ∈ 𝑋 ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
26
|
anbi1i |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
28 |
|
anass |
⊢ ( ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
29 |
27 28
|
bitri |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
30 |
22 29
|
bitri |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
31 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) |
32 |
|
fveq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝑧 ‘ 𝑘 ) = ( 𝑧 ‘ 𝐼 ) ) |
33 |
|
iftrue |
⊢ ( 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) = 𝑈 ) |
34 |
32 33
|
eleq12d |
⊢ ( 𝑘 = 𝐼 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
35 |
31 34
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑘 = 𝐼 → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
36 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
37 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
38 |
37
|
eleq2d |
⊢ ( ¬ 𝑘 = 𝐼 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
39 |
36 38
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( ¬ 𝑘 = 𝐼 → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
40 |
35 39
|
pm2.61d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
41 |
40
|
expr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) → ( ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
42 |
41
|
ralimdv |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
43 |
42
|
expimpd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
44 |
43
|
ancomsd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
45 |
|
elssuni |
⊢ ( 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) → 𝑈 ⊆ ∪ ( 𝐹 ‘ 𝐼 ) ) |
46 |
45
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝑈 ⊆ ∪ ( 𝐹 ‘ 𝐼 ) ) |
47 |
33 4
|
sseq12d |
⊢ ( 𝑘 = 𝐼 → ( if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ↔ 𝑈 ⊆ ∪ ( 𝐹 ‘ 𝐼 ) ) ) |
48 |
46 47
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
49 |
|
ssid |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) |
50 |
37 49
|
eqsstrdi |
⊢ ( ¬ 𝑘 = 𝐼 → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
51 |
48 50
|
pm2.61d1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
52 |
51
|
sseld |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
53 |
52
|
ralimdv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
54 |
34
|
rspcv |
⊢ ( 𝐼 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
55 |
54
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) |
56 |
53 55
|
jcad |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ) |
57 |
44 56
|
impbid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
58 |
57
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( 𝑧 Fn 𝐴 ∧ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝑧 ‘ 𝐼 ) ∈ 𝑈 ) ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
59 |
30 58
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ( 𝑧 ∈ 𝑋 ∧ ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) ‘ 𝑧 ) ∈ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
60 |
16 59
|
bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
61 |
24
|
elixp |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
62 |
60 61
|
bitr4di |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑧 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ↔ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
63 |
62
|
eqrdv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |