| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptbas.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 2 |  | ptbasfi.2 | ⊢ 𝑋  =  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 3 | 2 | ptpjpre1 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝐼 ) )  “  𝑈 )  =  X 𝑛  ∈  𝐴 if ( 𝑛  =  𝐼 ,  𝑈 ,  ∪  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | snfi | ⊢ { 𝐼 }  ∈  Fin | 
						
							| 6 | 5 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  { 𝐼 }  ∈  Fin ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  ∧  𝑛  =  𝐼 )  →  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  ∧  𝑛  =  𝐼 )  →  𝑛  =  𝐼 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  ∧  𝑛  =  𝐼 )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝐼 ) ) | 
						
							| 11 | 8 10 | eleqtrrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  ∧  𝑛  =  𝐼 )  →  𝑈  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 13 | 12 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑛 )  ∈  Top ) | 
						
							| 14 |  | eqid | ⊢ ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 15 | 14 | topopn | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  Top  →  ∪  ( 𝐹 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 16 | 13 15 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  →  ∪  ( 𝐹 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  ∧  ¬  𝑛  =  𝐼 )  →  ∪  ( 𝐹 ‘ 𝑛 )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 18 | 11 17 | ifclda | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  𝐴 )  →  if ( 𝑛  =  𝐼 ,  𝑈 ,  ∪  ( 𝐹 ‘ 𝑛 ) )  ∈  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 19 |  | eldifsni | ⊢ ( 𝑛  ∈  ( 𝐴  ∖  { 𝐼 } )  →  𝑛  ≠  𝐼 ) | 
						
							| 20 | 19 | neneqd | ⊢ ( 𝑛  ∈  ( 𝐴  ∖  { 𝐼 } )  →  ¬  𝑛  =  𝐼 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∖  { 𝐼 } ) )  →  ¬  𝑛  =  𝐼 ) | 
						
							| 22 | 21 | iffalsed | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  ∧  𝑛  ∈  ( 𝐴  ∖  { 𝐼 } ) )  →  if ( 𝑛  =  𝐼 ,  𝑈 ,  ∪  ( 𝐹 ‘ 𝑛 ) )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 23 | 1 4 6 18 22 | elptr2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  X 𝑛  ∈  𝐴 if ( 𝑛  =  𝐼 ,  𝑈 ,  ∪  ( 𝐹 ‘ 𝑛 ) )  ∈  𝐵 ) | 
						
							| 24 | 3 23 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝐼  ∈  𝐴  ∧  𝑈  ∈  ( 𝐹 ‘ 𝐼 ) ) )  →  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝐼 ) )  “  𝑈 )  ∈  𝐵 ) |