Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
2 |
|
ptbasfi.2 |
⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) |
3 |
2
|
ptpjpre1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) = X 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝐴 ∈ 𝑉 ) |
5 |
|
snfi |
⊢ { 𝐼 } ∈ Fin |
6 |
5
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → { 𝐼 } ∈ Fin ) |
7 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) |
9 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑛 = 𝐼 ) |
10 |
9
|
fveq2d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝐼 ) ) |
11 |
8 10
|
eleqtrrd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ 𝑛 = 𝐼 ) → 𝑈 ∈ ( 𝐹 ‘ 𝑛 ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → 𝐹 : 𝐴 ⟶ Top ) |
13 |
12
|
ffvelrnda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑛 ) ∈ Top ) |
14 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) |
15 |
14
|
topopn |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ Top → ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
16 |
13 15
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) ∧ ¬ 𝑛 = 𝐼 ) → ∪ ( 𝐹 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
18 |
11 17
|
ifclda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
19 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) → 𝑛 ≠ 𝐼 ) |
20 |
19
|
neneqd |
⊢ ( 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) → ¬ 𝑛 = 𝐼 ) |
21 |
20
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) ) → ¬ 𝑛 = 𝐼 ) |
22 |
21
|
iffalsed |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ { 𝐼 } ) ) → if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
23 |
1 4 6 18 22
|
elptr2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → X 𝑛 ∈ 𝐴 if ( 𝑛 = 𝐼 , 𝑈 , ∪ ( 𝐹 ‘ 𝑛 ) ) ∈ 𝐵 ) |
24 |
3 23
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑈 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝐼 ) ) “ 𝑈 ) ∈ 𝐵 ) |