| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptrescn.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ptrescn.2 | ⊢ 𝐽  =  ( ∏t ‘ 𝐹 ) | 
						
							| 3 |  | ptrescn.3 | ⊢ 𝐾  =  ( ∏t ‘ ( 𝐹  ↾  𝐵 ) ) | 
						
							| 4 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝑋 )  →  𝐵  ⊆  𝐴 ) | 
						
							| 5 | 2 | ptuni | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐽 ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐽 ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  𝑋 ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↔  𝑥  ∈  𝑋 ) ) | 
						
							| 9 | 8 | biimpar | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 10 |  | resixp | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝑥  ∈  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑥  ↾  𝐵 )  ∈  X 𝑘  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 11 | 4 9 10 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  ↾  𝐵 )  ∈  X 𝑘  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 |  | ixpeq2 | ⊢ ( ∀ 𝑘  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 )  →  X 𝑘  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  X 𝑘  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 13 |  | fvres | ⊢ ( 𝑘  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 14 | 13 | unieqd | ⊢ ( 𝑘  ∈  𝐵  →  ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 | 12 14 | mprg | ⊢ X 𝑘  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  X 𝑘  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑘 ) | 
						
							| 16 |  | ssexg | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐵  ∈  V ) | 
						
							| 17 | 16 | ancoms | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 18 | 17 | 3adant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 19 |  | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top ) | 
						
							| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top ) | 
						
							| 21 | 3 | ptuni | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top )  →  X 𝑘  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  X 𝑘  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 23 | 15 22 | eqtr3id | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  X 𝑘  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝑋 )  →  X 𝑘  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐾 ) | 
						
							| 25 | 11 24 | eleqtrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  ↾  𝐵 )  ∈  ∪  𝐾 ) | 
						
							| 26 | 25 | fmpttd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) : 𝑋 ⟶ ∪  𝐾 ) | 
						
							| 27 |  | fimacnv | ⊢ ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) : 𝑋 ⟶ ∪  𝐾  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ∪  𝐾 )  =  𝑋 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ∪  𝐾 )  =  𝑋 ) | 
						
							| 29 |  | pttop | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 30 | 2 29 | eqeltrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐽  ∈  Top ) | 
						
							| 31 | 30 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝐽  ∈  Top ) | 
						
							| 32 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝑋  ∈  𝐽 ) | 
						
							| 34 | 28 33 | eqeltrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ∪  𝐾 )  ∈  𝐽 ) | 
						
							| 35 |  | elsni | ⊢ ( 𝑣  ∈  { ∪  𝐾 }  →  𝑣  =  ∪  𝐾 ) | 
						
							| 36 | 35 | imaeq2d | ⊢ ( 𝑣  ∈  { ∪  𝐾 }  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  =  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ∪  𝐾 ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑣  ∈  { ∪  𝐾 }  →  ( ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ↔  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ∪  𝐾 )  ∈  𝐽 ) ) | 
						
							| 38 | 34 37 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑣  ∈  { ∪  𝐾 }  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 39 | 38 | ralrimiv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ∀ 𝑣  ∈  { ∪  𝐾 } ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) | 
						
							| 40 |  | imaco | ⊢ ( ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  ∘  ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) ) )  “  𝑢 )  =  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 41 |  | cnvco | ⊢ ◡ ( ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  ∘  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) )  =  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  ∘  ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) ) ) | 
						
							| 42 | 25 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥  ↾  𝐵 )  ∈  ∪  𝐾 ) | 
						
							| 43 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) ) | 
						
							| 44 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  =  ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) ) ) | 
						
							| 45 |  | fveq1 | ⊢ ( 𝑧  =  ( 𝑥  ↾  𝐵 )  →  ( 𝑧 ‘ 𝑘 )  =  ( ( 𝑥  ↾  𝐵 ) ‘ 𝑘 ) ) | 
						
							| 46 | 42 43 44 45 | fmptco | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  ∘  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  ↾  𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 47 |  | fvres | ⊢ ( 𝑘  ∈  𝐵  →  ( ( 𝑥  ↾  𝐵 ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ( 𝑥  ↾  𝐵 ) ‘ 𝑘 )  =  ( 𝑥 ‘ 𝑘 ) ) | 
						
							| 49 | 48 | mpteq2dv | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  ↾  𝐵 ) ‘ 𝑘 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 50 | 46 49 | eqtrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  ∘  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 51 | 50 | cnveqd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ◡ ( ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  ∘  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) )  =  ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 52 | 41 51 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  ∘  ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) ) )  =  ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) ) ) | 
						
							| 53 | 52 | imaeq1d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  ∘  ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) ) )  “  𝑢 )  =  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 54 | 40 53 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 55 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 56 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝐹 : 𝐴 ⟶ Top ) | 
						
							| 57 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝐵  ⊆  𝐴 ) | 
						
							| 58 |  | simprl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝑘  ∈  𝐵 ) | 
						
							| 59 | 57 58 | sseldd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 60 | 1 2 | ptpjcn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝑘  ∈  𝐴 )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 61 | 55 56 59 60 | syl3anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 62 |  | simprr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 63 |  | cnima | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  ∈  ( 𝐽  Cn  ( 𝐹 ‘ 𝑘 ) )  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 64 | 61 62 63 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑘 ) )  “  𝑢 )  ∈  𝐽 ) | 
						
							| 65 | 54 64 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  𝐽 ) | 
						
							| 66 |  | imaeq2 | ⊢ ( 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  =  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 67 | 66 | eleq1d | ⊢ ( 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ↔  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  𝐽 ) ) | 
						
							| 68 | 65 67 | syl5ibrcom | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  ∧  ( 𝑘  ∈  𝐵  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) ) )  →  ( 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 69 | 68 | rexlimdvva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 70 | 69 | alrimiv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ∀ 𝑣 ( ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 71 |  | eqid | ⊢ ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 72 | 71 | rnmpo | ⊢ ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  =  { 𝑦  ∣  ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) } | 
						
							| 73 | 72 | raleqi | ⊢ ( ∀ 𝑣  ∈  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ↔  ∀ 𝑣  ∈  { 𝑦  ∣  ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) } ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) | 
						
							| 74 | 13 | rexeqdv | ⊢ ( 𝑘  ∈  𝐵  →  ( ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  ↔  ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 75 |  | eqeq1 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  ↔  𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 76 | 75 | rexbidv | ⊢ ( 𝑦  =  𝑣  →  ( ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  ↔  ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 77 | 74 76 | sylan9bbr | ⊢ ( ( 𝑦  =  𝑣  ∧  𝑘  ∈  𝐵 )  →  ( ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  ↔  ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 78 | 77 | rexbidva | ⊢ ( 𝑦  =  𝑣  →  ( ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  ↔  ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 79 | 78 | ralab | ⊢ ( ∀ 𝑣  ∈  { 𝑦  ∣  ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) } ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ↔  ∀ 𝑣 ( ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 80 | 73 79 | bitri | ⊢ ( ∀ 𝑣  ∈  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ↔  ∀ 𝑣 ( ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( 𝐹 ‘ 𝑘 ) 𝑣  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 )  →  ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 81 | 70 80 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ∀ 𝑣  ∈  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) | 
						
							| 82 |  | ralunb | ⊢ ( ∀ 𝑣  ∈  ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ↔  ( ∀ 𝑣  ∈  { ∪  𝐾 } ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽  ∧  ∀ 𝑣  ∈  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) | 
						
							| 83 | 39 81 82 | sylanbrc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ∀ 𝑣  ∈  ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) | 
						
							| 84 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 85 | 31 84 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 86 |  | snex | ⊢ { ∪  𝐾 }  ∈  V | 
						
							| 87 |  | fvex | ⊢ ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ∈  V | 
						
							| 88 | 87 | abrexex | ⊢ { 𝑦  ∣  ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) }  ∈  V | 
						
							| 89 | 88 | rgenw | ⊢ ∀ 𝑘  ∈  𝐵 { 𝑦  ∣  ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) }  ∈  V | 
						
							| 90 |  | abrexex2g | ⊢ ( ( 𝐵  ∈  V  ∧  ∀ 𝑘  ∈  𝐵 { 𝑦  ∣  ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) }  ∈  V )  →  { 𝑦  ∣  ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) }  ∈  V ) | 
						
							| 91 | 18 89 90 | sylancl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  { 𝑦  ∣  ∃ 𝑘  ∈  𝐵 ∃ 𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) 𝑦  =  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) }  ∈  V ) | 
						
							| 92 | 72 91 | eqeltrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V ) | 
						
							| 93 |  | unexg | ⊢ ( ( { ∪  𝐾 }  ∈  V  ∧  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V )  →  ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 94 | 86 92 93 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 95 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 96 | 3 95 71 | ptval2 | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top )  →  𝐾  =  ( topGen ‘ ( fi ‘ ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 97 | 18 20 96 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝐾  =  ( topGen ‘ ( fi ‘ ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 98 |  | pttop | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top )  →  ( ∏t ‘ ( 𝐹  ↾  𝐵 ) )  ∈  Top ) | 
						
							| 99 | 18 20 98 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( ∏t ‘ ( 𝐹  ↾  𝐵 ) )  ∈  Top ) | 
						
							| 100 | 3 99 | eqeltrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝐾  ∈  Top ) | 
						
							| 101 | 95 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 102 | 100 101 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 103 | 85 94 97 102 | subbascn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) ) : 𝑋 ⟶ ∪  𝐾  ∧  ∀ 𝑣  ∈  ( { ∪  𝐾 }  ∪  ran  ( 𝑘  ∈  𝐵 ,  𝑢  ∈  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑧  ∈  ∪  𝐾  ↦  ( 𝑧 ‘ 𝑘 ) )  “  𝑢 ) ) ) ( ◡ ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  “  𝑣 )  ∈  𝐽 ) ) ) | 
						
							| 104 | 26 83 103 | mpbir2and | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥  ↾  𝐵 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) |