Step |
Hyp |
Ref |
Expression |
1 |
|
ptrescn.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
ptrescn.2 |
⊢ 𝐽 = ( ∏t ‘ 𝐹 ) |
3 |
|
ptrescn.3 |
⊢ 𝐾 = ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) |
4 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ⊆ 𝐴 ) |
5 |
2
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐽 ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐽 ) |
7 |
6 1
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = 𝑋 ) |
8 |
7
|
eleq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ 𝑥 ∈ 𝑋 ) ) |
9 |
8
|
biimpar |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
10 |
|
resixp |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑥 ↾ 𝐵 ) ∈ X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) ) |
11 |
4 9 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ↾ 𝐵 ) ∈ X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) ) |
12 |
|
ixpeq2 |
⊢ ( ∀ 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) → X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) ) |
13 |
|
fvres |
⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
14 |
13
|
unieqd |
⊢ ( 𝑘 ∈ 𝐵 → ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
15 |
12 14
|
mprg |
⊢ X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) |
16 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ∈ V ) |
17 |
16
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
18 |
17
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
19 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
21 |
3
|
ptuni |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ 𝐾 ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ∪ 𝐾 ) |
23 |
15 22
|
eqtr3id |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → X 𝑘 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
25 |
11 24
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ↾ 𝐵 ) ∈ ∪ 𝐾 ) |
26 |
25
|
fmpttd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) : 𝑋 ⟶ ∪ 𝐾 ) |
27 |
|
fimacnv |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) : 𝑋 ⟶ ∪ 𝐾 → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) = 𝑋 ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) = 𝑋 ) |
29 |
|
pttop |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) |
30 |
2 29
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 ∈ Top ) |
31 |
30
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ Top ) |
32 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
33 |
31 32
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝑋 ∈ 𝐽 ) |
34 |
28 33
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) ∈ 𝐽 ) |
35 |
|
elsni |
⊢ ( 𝑣 ∈ { ∪ 𝐾 } → 𝑣 = ∪ 𝐾 ) |
36 |
35
|
imaeq2d |
⊢ ( 𝑣 ∈ { ∪ 𝐾 } → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑣 ∈ { ∪ 𝐾 } → ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ∪ 𝐾 ) ∈ 𝐽 ) ) |
38 |
34 37
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑣 ∈ { ∪ 𝐾 } → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
39 |
38
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ∈ { ∪ 𝐾 } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
40 |
|
imaco |
⊢ ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) “ 𝑢 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) |
41 |
|
cnvco |
⊢ ◡ ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) |
42 |
25
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ↾ 𝐵 ) ∈ ∪ 𝐾 ) |
43 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) |
44 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) = ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) |
45 |
|
fveq1 |
⊢ ( 𝑧 = ( 𝑥 ↾ 𝐵 ) → ( 𝑧 ‘ 𝑘 ) = ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) ) |
46 |
42 43 44 45
|
fmptco |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) ) ) |
47 |
|
fvres |
⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
48 |
47
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
49 |
48
|
mpteq2dv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑥 ↾ 𝐵 ) ‘ 𝑘 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
50 |
46 49
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
51 |
50
|
cnveqd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ◡ ( ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
52 |
41 51
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ) |
53 |
52
|
imaeq1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∘ ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) ) “ 𝑢 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ) |
54 |
40 53
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ) |
55 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐴 ∈ 𝑉 ) |
56 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐹 : 𝐴 ⟶ Top ) |
57 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝐵 ⊆ 𝐴 ) |
58 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝐵 ) |
59 |
57 58
|
sseldd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝐴 ) |
60 |
1 2
|
ptpjcn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
61 |
55 56 59 60
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
62 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) |
63 |
|
cnima |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐽 ) |
64 |
61 62 63
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐽 ) |
65 |
54 64
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ 𝐽 ) |
66 |
|
imaeq2 |
⊢ ( 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
67 |
66
|
eleq1d |
⊢ ( 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ 𝐽 ) ) |
68 |
65 67
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
69 |
68
|
rexlimdvva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
70 |
69
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
71 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) |
72 |
71
|
rnmpo |
⊢ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) = { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } |
73 |
72
|
raleqi |
⊢ ( ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ∀ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
74 |
13
|
rexeqdv |
⊢ ( 𝑘 ∈ 𝐵 → ( ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
75 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
77 |
74 76
|
sylan9bbr |
⊢ ( ( 𝑦 = 𝑣 ∧ 𝑘 ∈ 𝐵 ) → ( ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
78 |
77
|
rexbidva |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
79 |
78
|
ralab |
⊢ ( ∀ 𝑣 ∈ { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ∀ 𝑣 ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
80 |
73 79
|
bitri |
⊢ ( ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ∀ 𝑣 ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) → ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
81 |
70 80
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
82 |
|
ralunb |
⊢ ( ∀ 𝑣 ∈ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ↔ ( ∀ 𝑣 ∈ { ∪ 𝐾 } ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ∧ ∀ 𝑣 ∈ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) |
83 |
39 81 82
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑣 ∈ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) |
84 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
85 |
31 84
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
86 |
|
snex |
⊢ { ∪ 𝐾 } ∈ V |
87 |
|
fvex |
⊢ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ∈ V |
88 |
87
|
abrexex |
⊢ { 𝑦 ∣ ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V |
89 |
88
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝐵 { 𝑦 ∣ ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V |
90 |
|
abrexex2g |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑘 ∈ 𝐵 { 𝑦 ∣ ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V ) → { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V ) |
91 |
18 89 90
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → { 𝑦 ∣ ∃ 𝑘 ∈ 𝐵 ∃ 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) 𝑦 = ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) } ∈ V ) |
92 |
72 91
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
93 |
|
unexg |
⊢ ( ( { ∪ 𝐾 } ∈ V ∧ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) → ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
94 |
86 92 93
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
95 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
96 |
3 95 71
|
ptval2 |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → 𝐾 = ( topGen ‘ ( fi ‘ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
97 |
18 20 96
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐾 = ( topGen ‘ ( fi ‘ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
98 |
|
pttop |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) |
99 |
18 20 98
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) |
100 |
3 99
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐾 ∈ Top ) |
101 |
95
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
102 |
100 101
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
103 |
85 94 97 102
|
subbascn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑣 ∈ ( { ∪ 𝐾 } ∪ ran ( 𝑘 ∈ 𝐵 , 𝑢 ∈ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑧 ∈ ∪ 𝐾 ↦ ( 𝑧 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) “ 𝑣 ) ∈ 𝐽 ) ) ) |
104 |
26 83 103
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |