Step |
Hyp |
Ref |
Expression |
1 |
|
ptunimpt.j |
⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) |
2 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) → 𝐾 ∈ Top ) |
3 |
2
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) |
5 |
4
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) |
6 |
3 5
|
sylib |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) |
7 |
|
pttop |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) ∈ Top ) |
8 |
1 7
|
eqeltrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) → 𝐽 ∈ Top ) |
9 |
6 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ Top ) |
10 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐾 ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 ) |
12 |
|
ixpeq2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 ∪ 𝐾 ) |
13 |
11 12
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 ∪ 𝐾 ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥 ∈ 𝐴 𝐵 = X 𝑥 ∈ 𝐴 ∪ 𝐾 ) |
15 |
1
|
ptunimpt |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |
16 |
3 15
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |
17 |
14 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽 ) |
18 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ X 𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽 ) ) |
19 |
9 17 18
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝐵 ) ) |