Metamath Proof Explorer


Theorem pttopon

Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis ptunimpt.j 𝐽 = ( ∏t ‘ ( 𝑥𝐴𝐾 ) )
Assertion pttopon ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ptunimpt.j 𝐽 = ( ∏t ‘ ( 𝑥𝐴𝐾 ) )
2 topontop ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) → 𝐾 ∈ Top )
3 2 ralimi ( ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥𝐴 𝐾 ∈ Top )
4 eqid ( 𝑥𝐴𝐾 ) = ( 𝑥𝐴𝐾 )
5 4 fmpt ( ∀ 𝑥𝐴 𝐾 ∈ Top ↔ ( 𝑥𝐴𝐾 ) : 𝐴 ⟶ Top )
6 3 5 sylib ( ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ( 𝑥𝐴𝐾 ) : 𝐴 ⟶ Top )
7 pttop ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐾 ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝑥𝐴𝐾 ) ) ∈ Top )
8 1 7 eqeltrid ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐾 ) : 𝐴 ⟶ Top ) → 𝐽 ∈ Top )
9 6 8 sylan2 ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ Top )
10 toponuni ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = 𝐾 )
11 10 ralimi ( ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → ∀ 𝑥𝐴 𝐵 = 𝐾 )
12 ixpeq2 ( ∀ 𝑥𝐴 𝐵 = 𝐾X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐾 )
13 11 12 syl ( ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) → X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐾 )
14 13 adantl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝐾 )
15 1 ptunimpt ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → X 𝑥𝐴 𝐾 = 𝐽 )
16 3 15 sylan2 ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥𝐴 𝐾 = 𝐽 )
17 14 16 eqtrd ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → X 𝑥𝐴 𝐵 = 𝐽 )
18 istopon ( 𝐽 ∈ ( TopOn ‘ X 𝑥𝐴 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ X 𝑥𝐴 𝐵 = 𝐽 ) )
19 9 17 18 sylanbrc ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥𝐴 𝐵 ) )