Metamath Proof Explorer


Theorem pttoponconst

Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis ptuniconst.2 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) )
Assertion pttoponconst ( ( 𝐴𝑉𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋m 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ptuniconst.2 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) )
2 id ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
3 2 ralrimivw ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑥𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
4 fconstmpt ( 𝐴 × { 𝑅 } ) = ( 𝑥𝐴𝑅 )
5 4 fveq2i ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) = ( ∏t ‘ ( 𝑥𝐴𝑅 ) )
6 1 5 eqtri 𝐽 = ( ∏t ‘ ( 𝑥𝐴𝑅 ) )
7 6 pttopon ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥𝐴 𝑋 ) )
8 3 7 sylan2 ( ( 𝐴𝑉𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥𝐴 𝑋 ) )
9 toponmax ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋𝑅 )
10 ixpconstg ( ( 𝐴𝑉𝑋𝑅 ) → X 𝑥𝐴 𝑋 = ( 𝑋m 𝐴 ) )
11 9 10 sylan2 ( ( 𝐴𝑉𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → X 𝑥𝐴 𝑋 = ( 𝑋m 𝐴 ) )
12 11 fveq2d ( ( 𝐴𝑉𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( TopOn ‘ X 𝑥𝐴 𝑋 ) = ( TopOn ‘ ( 𝑋m 𝐴 ) ) )
13 8 12 eleqtrd ( ( 𝐴𝑉𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋m 𝐴 ) ) )