Step |
Hyp |
Ref |
Expression |
1 |
|
ptuniconst.2 |
⊢ 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) |
2 |
|
id |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
2
|
ralrimivw |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝑅 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) |
5 |
4
|
fveq2i |
⊢ ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
6 |
1 5
|
eqtri |
⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
7 |
6
|
pttopon |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) ) |
8 |
3 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) ) |
9 |
|
toponmax |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) |
10 |
|
ixpconstg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → X 𝑥 ∈ 𝐴 𝑋 = ( 𝑋 ↑m 𝐴 ) ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → X 𝑥 ∈ 𝐴 𝑋 = ( 𝑋 ↑m 𝐴 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) = ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |
13 |
8 12
|
eleqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |