| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptunhmeo.x | ⊢ 𝑋  =  ∪  𝐾 | 
						
							| 2 |  | ptunhmeo.y | ⊢ 𝑌  =  ∪  𝐿 | 
						
							| 3 |  | ptunhmeo.j | ⊢ 𝐽  =  ( ∏t ‘ 𝐹 ) | 
						
							| 4 |  | ptunhmeo.k | ⊢ 𝐾  =  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) ) | 
						
							| 5 |  | ptunhmeo.l | ⊢ 𝐿  =  ( ∏t ‘ ( 𝐹  ↾  𝐵 ) ) | 
						
							| 6 |  | ptunhmeo.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 7 |  | ptunhmeo.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 8 |  | ptunhmeo.f | ⊢ ( 𝜑  →  𝐹 : 𝐶 ⟶ Top ) | 
						
							| 9 |  | ptunhmeo.u | ⊢ ( 𝜑  →  𝐶  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 10 |  | ptunhmeo.i | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 11 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 12 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 13 | 11 12 | op1std | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 1st  ‘ 𝑧 )  =  𝑥 ) | 
						
							| 14 | 11 12 | op2ndd | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 2nd  ‘ 𝑧 )  =  𝑦 ) | 
						
							| 15 | 13 14 | uneq12d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  =  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 16 | 15 | mpompt | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  ( 𝑥  ∪  𝑦 ) ) | 
						
							| 17 | 6 16 | eqtr4i | ⊢ 𝐺  =  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ) | 
						
							| 18 |  | xp1st | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( 1st  ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 1st  ‘ 𝑧 )  ∈  𝑋 ) | 
						
							| 20 |  | ixpeq2 | ⊢ ( ∀ 𝑛  ∈  𝐴 ∪  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 )  →  X 𝑛  ∈  𝐴 ∪  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 21 |  | fvres | ⊢ ( 𝑛  ∈  𝐴  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 22 | 21 | unieqd | ⊢ ( 𝑛  ∈  𝐴  →  ∪  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 23 | 20 22 | mprg | ⊢ X 𝑛  ∈  𝐴 ∪  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 24 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 25 | 24 9 | sseqtrrid | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 26 | 7 25 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 27 | 8 25 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ Top ) | 
						
							| 28 | 4 | ptuni | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ Top )  →  X 𝑛  ∈  𝐴 ∪  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  ∪  𝐾 ) | 
						
							| 29 | 26 27 28 | syl2anc | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐴 ∪  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑛 )  =  ∪  𝐾 ) | 
						
							| 30 | 23 29 | eqtr3id | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  𝐾 ) | 
						
							| 31 | 30 1 | eqtr4di | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  𝑋 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  𝑋 ) | 
						
							| 33 | 19 32 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 1st  ‘ 𝑧 )  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 34 |  | xp2nd | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( 2nd  ‘ 𝑧 )  ∈  𝑌 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 2nd  ‘ 𝑧 )  ∈  𝑌 ) | 
						
							| 36 | 9 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  =  𝐶 ) | 
						
							| 37 |  | uneqdifeq | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝐴  ∪  𝐵 )  =  𝐶  ↔  ( 𝐶  ∖  𝐴 )  =  𝐵 ) ) | 
						
							| 38 | 25 10 37 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  ∪  𝐵 )  =  𝐶  ↔  ( 𝐶  ∖  𝐴 )  =  𝐵 ) ) | 
						
							| 39 | 36 38 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∖  𝐴 )  =  𝐵 ) | 
						
							| 40 | 39 | ixpeq1d | ⊢ ( 𝜑  →  X 𝑛  ∈  ( 𝐶  ∖  𝐴 ) ∪  ( 𝐹 ‘ 𝑛 )  =  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 41 |  | ixpeq2 | ⊢ ( ∀ 𝑛  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 )  →  X 𝑛  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 42 |  | fvres | ⊢ ( 𝑛  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 43 | 42 | unieqd | ⊢ ( 𝑛  ∈  𝐵  →  ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 44 | 41 43 | mprg | ⊢ X 𝑛  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 45 |  | ssun2 | ⊢ 𝐵  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 46 | 45 9 | sseqtrrid | ⊢ ( 𝜑  →  𝐵  ⊆  𝐶 ) | 
						
							| 47 | 7 46 | ssexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 48 | 8 46 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top ) | 
						
							| 49 | 5 | ptuni | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top )  →  X 𝑛  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  ∪  𝐿 ) | 
						
							| 50 | 47 48 49 | syl2anc | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐵 ∪  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑛 )  =  ∪  𝐿 ) | 
						
							| 51 | 44 50 | eqtr3id | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  𝐿 ) | 
						
							| 52 | 51 2 | eqtr4di | ⊢ ( 𝜑  →  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 )  =  𝑌 ) | 
						
							| 53 | 40 52 | eqtrd | ⊢ ( 𝜑  →  X 𝑛  ∈  ( 𝐶  ∖  𝐴 ) ∪  ( 𝐹 ‘ 𝑛 )  =  𝑌 ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  X 𝑛  ∈  ( 𝐶  ∖  𝐴 ) ∪  ( 𝐹 ‘ 𝑛 )  =  𝑌 ) | 
						
							| 55 | 35 54 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 2nd  ‘ 𝑧 )  ∈  X 𝑛  ∈  ( 𝐶  ∖  𝐴 ) ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 56 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  𝐴  ⊆  𝐶 ) | 
						
							| 57 |  | undifixp | ⊢ ( ( ( 1st  ‘ 𝑧 )  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ∧  ( 2nd  ‘ 𝑧 )  ∈  X 𝑛  ∈  ( 𝐶  ∖  𝐴 ) ∪  ( 𝐹 ‘ 𝑛 )  ∧  𝐴  ⊆  𝐶 )  →  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  ∈  X 𝑛  ∈  𝐶 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 58 | 33 55 56 57 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  ∈  X 𝑛  ∈  𝐶 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 59 |  | ixpfn | ⊢ ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  ∈  X 𝑛  ∈  𝐶 ∪  ( 𝐹 ‘ 𝑛 )  →  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  Fn  𝐶 ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  Fn  𝐶 ) | 
						
							| 61 |  | dffn5 | ⊢ ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  Fn  𝐶  ↔  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  =  ( 𝑘  ∈  𝐶  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) | 
						
							| 62 | 60 61 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) )  =  ( 𝑘  ∈  𝐶  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) | 
						
							| 63 | 62 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 𝑘  ∈  𝐶  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 64 | 17 63 | eqtrid | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 𝑘  ∈  𝐶  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 65 |  | pttop | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ Top )  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Top ) | 
						
							| 66 | 26 27 65 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( 𝐹  ↾  𝐴 ) )  ∈  Top ) | 
						
							| 67 | 4 66 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 68 | 1 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 69 | 67 68 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 70 |  | pttop | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top )  →  ( ∏t ‘ ( 𝐹  ↾  𝐵 ) )  ∈  Top ) | 
						
							| 71 | 47 48 70 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ ( 𝐹  ↾  𝐵 ) )  ∈  Top ) | 
						
							| 72 | 5 71 | eqeltrid | ⊢ ( 𝜑  →  𝐿  ∈  Top ) | 
						
							| 73 | 2 | toptopon | ⊢ ( 𝐿  ∈  Top  ↔  𝐿  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 74 | 72 73 | sylib | ⊢ ( 𝜑  →  𝐿  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 75 |  | txtopon | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐾  ×t  𝐿 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 76 | 69 74 75 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ×t  𝐿 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 77 | 9 | eleq2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐶  ↔  𝑘  ∈  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 78 | 77 | biimpa | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝑘  ∈  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 79 |  | elun | ⊢ ( 𝑘  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  𝐵 ) ) | 
						
							| 80 | 78 79 | sylib | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  𝐵 ) ) | 
						
							| 81 |  | ixpfn | ⊢ ( ( 1st  ‘ 𝑧 )  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  →  ( 1st  ‘ 𝑧 )  Fn  𝐴 ) | 
						
							| 82 | 33 81 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 1st  ‘ 𝑧 )  Fn  𝐴 ) | 
						
							| 83 | 82 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 1st  ‘ 𝑧 )  Fn  𝐴 ) | 
						
							| 84 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 )  =  𝑌 ) | 
						
							| 85 | 35 84 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 2nd  ‘ 𝑧 )  ∈  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 86 |  | ixpfn | ⊢ ( ( 2nd  ‘ 𝑧 )  ∈  X 𝑛  ∈  𝐵 ∪  ( 𝐹 ‘ 𝑛 )  →  ( 2nd  ‘ 𝑧 )  Fn  𝐵 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 2nd  ‘ 𝑧 )  Fn  𝐵 ) | 
						
							| 88 | 87 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 2nd  ‘ 𝑧 )  Fn  𝐵 ) | 
						
							| 89 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 90 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 91 |  | fvun1 | ⊢ ( ( ( 1st  ‘ 𝑧 )  Fn  𝐴  ∧  ( 2nd  ‘ 𝑧 )  Fn  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝑘  ∈  𝐴 ) )  →  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 )  =  ( ( 1st  ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 92 | 83 88 89 90 91 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 )  =  ( ( 1st  ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 93 | 92 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) )  =  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 1st  ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 94 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐾  ×t  𝐿 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 95 | 13 | mpompt | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 1st  ‘ 𝑧 ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝑥 ) | 
						
							| 96 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐾  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 97 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐿  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 98 | 96 97 | cnmpt1st | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝑥 )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐾 ) ) | 
						
							| 99 | 95 98 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 1st  ‘ 𝑧 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐾 ) ) | 
						
							| 100 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐴  ∈  V ) | 
						
							| 101 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ Top ) | 
						
							| 102 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝐴 ) | 
						
							| 103 | 1 4 | ptpjcn | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝐹  ↾  𝐴 ) : 𝐴 ⟶ Top  ∧  𝑘  ∈  𝐴 )  →  ( 𝑓  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  ( 𝐾  Cn  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 104 | 100 101 102 103 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑓  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  ( 𝐾  Cn  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑘 ) ) ) | 
						
							| 105 |  | fvres | ⊢ ( 𝑘  ∈  𝐴  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 107 | 106 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐾  Cn  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑘 ) )  =  ( 𝐾  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 108 | 104 107 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑓  ∈  𝑋  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  ( 𝐾  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 109 |  | fveq1 | ⊢ ( 𝑓  =  ( 1st  ‘ 𝑧 )  →  ( 𝑓 ‘ 𝑘 )  =  ( ( 1st  ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 110 | 94 99 96 108 109 | cnmpt11 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 1st  ‘ 𝑧 ) ‘ 𝑘 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 111 | 93 110 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 112 | 82 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 1st  ‘ 𝑧 )  Fn  𝐴 ) | 
						
							| 113 | 87 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 2nd  ‘ 𝑧 )  Fn  𝐵 ) | 
						
							| 114 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 115 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  𝑘  ∈  𝐵 ) | 
						
							| 116 |  | fvun2 | ⊢ ( ( ( 1st  ‘ 𝑧 )  Fn  𝐴  ∧  ( 2nd  ‘ 𝑧 )  Fn  𝐵  ∧  ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝑘  ∈  𝐵 ) )  →  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 )  =  ( ( 2nd  ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 117 | 112 113 114 115 116 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  ∧  𝑧  ∈  ( 𝑋  ×  𝑌 ) )  →  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 )  =  ( ( 2nd  ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 118 | 117 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) )  =  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 2nd  ‘ 𝑧 ) ‘ 𝑘 ) ) ) | 
						
							| 119 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝐾  ×t  𝐿 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 120 | 14 | mpompt | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 2nd  ‘ 𝑧 ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝑦 ) | 
						
							| 121 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  𝐾  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 122 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  𝐿  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 123 | 121 122 | cnmpt2nd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝑦 )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐿 ) ) | 
						
							| 124 | 120 123 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 2nd  ‘ 𝑧 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐿 ) ) | 
						
							| 125 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 126 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top ) | 
						
							| 127 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  𝑘  ∈  𝐵 ) | 
						
							| 128 | 2 5 | ptpjcn | ⊢ ( ( 𝐵  ∈  V  ∧  ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ Top  ∧  𝑘  ∈  𝐵 )  →  ( 𝑓  ∈  𝑌  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  ( 𝐿  Cn  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 129 | 125 126 127 128 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑓  ∈  𝑌  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  ( 𝐿  Cn  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) ) ) | 
						
							| 130 |  | fvres | ⊢ ( 𝑘  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 132 | 131 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝐿  Cn  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑘 ) )  =  ( 𝐿  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 133 | 129 132 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑓  ∈  𝑌  ↦  ( 𝑓 ‘ 𝑘 ) )  ∈  ( 𝐿  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 134 |  | fveq1 | ⊢ ( 𝑓  =  ( 2nd  ‘ 𝑧 )  →  ( 𝑓 ‘ 𝑘 )  =  ( ( 2nd  ‘ 𝑧 ) ‘ 𝑘 ) ) | 
						
							| 135 | 119 124 122 133 134 | cnmpt11 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( 2nd  ‘ 𝑧 ) ‘ 𝑘 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 136 | 118 135 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 137 | 111 136 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  𝐵 ) )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 138 | 80 137 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 139 | 3 76 7 8 138 | ptcn | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ↦  ( 𝑘  ∈  𝐶  ↦  ( ( ( 1st  ‘ 𝑧 )  ∪  ( 2nd  ‘ 𝑧 ) ) ‘ 𝑘 ) ) )  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐽 ) ) | 
						
							| 140 | 64 139 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐽 ) ) | 
						
							| 141 | 1 2 3 4 5 6 7 8 9 10 | ptuncnv | ⊢ ( 𝜑  →  ◡ 𝐺  =  ( 𝑧  ∈  ∪  𝐽  ↦  〈 ( 𝑧  ↾  𝐴 ) ,  ( 𝑧  ↾  𝐵 ) 〉 ) ) | 
						
							| 142 |  | pttop | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝐹 : 𝐶 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 143 | 7 8 142 | syl2anc | ⊢ ( 𝜑  →  ( ∏t ‘ 𝐹 )  ∈  Top ) | 
						
							| 144 | 3 143 | eqeltrid | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 145 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 146 | 145 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 147 | 144 146 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 148 | 145 3 4 | ptrescn | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝐹 : 𝐶 ⟶ Top  ∧  𝐴  ⊆  𝐶 )  →  ( 𝑧  ∈  ∪  𝐽  ↦  ( 𝑧  ↾  𝐴 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 149 | 7 8 25 148 | syl3anc | ⊢ ( 𝜑  →  ( 𝑧  ∈  ∪  𝐽  ↦  ( 𝑧  ↾  𝐴 ) )  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 150 | 145 3 5 | ptrescn | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝐹 : 𝐶 ⟶ Top  ∧  𝐵  ⊆  𝐶 )  →  ( 𝑧  ∈  ∪  𝐽  ↦  ( 𝑧  ↾  𝐵 ) )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 151 | 7 8 46 150 | syl3anc | ⊢ ( 𝜑  →  ( 𝑧  ∈  ∪  𝐽  ↦  ( 𝑧  ↾  𝐵 ) )  ∈  ( 𝐽  Cn  𝐿 ) ) | 
						
							| 152 | 147 149 151 | cnmpt1t | ⊢ ( 𝜑  →  ( 𝑧  ∈  ∪  𝐽  ↦  〈 ( 𝑧  ↾  𝐴 ) ,  ( 𝑧  ↾  𝐵 ) 〉 )  ∈  ( 𝐽  Cn  ( 𝐾  ×t  𝐿 ) ) ) | 
						
							| 153 | 141 152 | eqeltrd | ⊢ ( 𝜑  →  ◡ 𝐺  ∈  ( 𝐽  Cn  ( 𝐾  ×t  𝐿 ) ) ) | 
						
							| 154 |  | ishmeo | ⊢ ( 𝐺  ∈  ( ( 𝐾  ×t  𝐿 ) Homeo 𝐽 )  ↔  ( 𝐺  ∈  ( ( 𝐾  ×t  𝐿 )  Cn  𝐽 )  ∧  ◡ 𝐺  ∈  ( 𝐽  Cn  ( 𝐾  ×t  𝐿 ) ) ) ) | 
						
							| 155 | 140 153 154 | sylanbrc | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐾  ×t  𝐿 ) Homeo 𝐽 ) ) |