| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptuni.1 | ⊢ 𝐽  =  ( ∏t ‘ 𝐹 ) | 
						
							| 2 |  | eqid | ⊢ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 3 | 2 | ptbas | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ∈  TopBases ) | 
						
							| 4 |  | unitg | ⊢ ( { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ∈  TopBases  →  ∪  ( topGen ‘ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } )  =  ∪  { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  ( topGen ‘ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } )  =  ∪  { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 6 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top  →  𝐹  Fn  𝐴 ) | 
						
							| 7 | 2 | ptval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 9 | 1 8 | eqtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐽  =  ( topGen ‘ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 10 | 9 | unieqd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  𝐽  =  ∪  ( topGen ‘ { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 11 | 2 | ptuni2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑥  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑥 )  =  ∪  { 𝑘  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑘  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) | 
						
							| 12 | 5 10 11 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑥  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑥 )  =  ∪  𝐽 ) |