Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
2 |
1
|
ptbasid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
3 |
|
elssuni |
⊢ ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐵 ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ 𝐵 ) |
5 |
|
simpr2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
6 |
|
elssuni |
⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) ) |
8 |
|
ss2ixp |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) |
9 |
5 7 8
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑘 ) ) |
11 |
10
|
unieqd |
⊢ ( 𝑦 = 𝑘 → ∪ ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
12 |
11
|
cbvixpv |
⊢ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) |
13 |
9 12
|
sseqtrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
14 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ 𝑥 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
15 |
|
sseq1 |
⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑥 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
16 |
14 15
|
syl5bb |
⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
17 |
13 16
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
18 |
17
|
expimpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
19 |
18
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ∈ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
20 |
19
|
abssdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
21 |
1 20
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ⊆ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
22 |
|
sspwuni |
⊢ ( 𝐵 ⊆ 𝒫 X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∪ 𝐵 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
23 |
21 22
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ 𝐵 ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
24 |
4 23
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐵 ) |