| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptbas.1 | ⊢ 𝐵  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 2 | 1 | ptbasid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∈  𝐵 ) | 
						
							| 3 |  | elssuni | ⊢ ( X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ∈  𝐵  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ⊆  ∪  𝐵 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ⊆  ∪  𝐵 ) | 
						
							| 5 |  | simpr2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 6 |  | elssuni | ⊢ ( ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ( 𝑔 ‘ 𝑦 )  ⊆  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  →  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 8 |  | ss2ixp | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  ∪  ( 𝐹 ‘ 𝑦 )  →  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 | 5 7 8 | 3syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 11 | 10 | unieqd | ⊢ ( 𝑦  =  𝑘  →  ∪  ( 𝐹 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 | 11 | cbvixpv | ⊢ X 𝑦  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑦 )  =  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) | 
						
							| 13 | 9 12 | sseqtrdi | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 14 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↔  𝑥  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 |  | sseq1 | ⊢ ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( 𝑥  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↔  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 16 | 14 15 | bitrid | ⊢ ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  ( 𝑥  ∈  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↔  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 17 | 13 16 | syl5ibrcom | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) ) )  →  ( 𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  →  𝑥  ∈  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 18 | 17 | expimpd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  𝑥  ∈  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 19 | 18 | exlimdv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) )  →  𝑥  ∈  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 20 | 19 | abssdv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  ⊆  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 21 | 1 20 | eqsstrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐵  ⊆  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 22 |  | sspwuni | ⊢ ( 𝐵  ⊆  𝒫  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  ↔  ∪  𝐵  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 23 | 21 22 | sylib | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ∪  𝐵  ⊆  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 24 | 4 23 | eqssd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑘  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑘 )  =  ∪  𝐵 ) |