Metamath Proof Explorer


Theorem ptuniconst

Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptuniconst.2 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) )
ptuniconst.1 𝑋 = 𝑅
Assertion ptuniconst ( ( 𝐴𝑉𝑅 ∈ Top ) → ( 𝑋m 𝐴 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 ptuniconst.2 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) )
2 ptuniconst.1 𝑋 = 𝑅
3 2 toptopon ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
4 1 pttoponconst ( ( 𝐴𝑉𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋m 𝐴 ) ) )
5 3 4 sylan2b ( ( 𝐴𝑉𝑅 ∈ Top ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋m 𝐴 ) ) )
6 toponuni ( 𝐽 ∈ ( TopOn ‘ ( 𝑋m 𝐴 ) ) → ( 𝑋m 𝐴 ) = 𝐽 )
7 5 6 syl ( ( 𝐴𝑉𝑅 ∈ Top ) → ( 𝑋m 𝐴 ) = 𝐽 )