Metamath Proof Explorer


Theorem ptunimpt

Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis ptunimpt.j 𝐽 = ( ∏t ‘ ( 𝑥𝐴𝐾 ) )
Assertion ptunimpt ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → X 𝑥𝐴 𝐾 = 𝐽 )

Proof

Step Hyp Ref Expression
1 ptunimpt.j 𝐽 = ( ∏t ‘ ( 𝑥𝐴𝐾 ) )
2 eqid ( 𝑥𝐴𝐾 ) = ( 𝑥𝐴𝐾 )
3 2 fvmpt2 ( ( 𝑥𝐴𝐾 ∈ Top ) → ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) = 𝐾 )
4 3 eqcomd ( ( 𝑥𝐴𝐾 ∈ Top ) → 𝐾 = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
5 4 unieqd ( ( 𝑥𝐴𝐾 ∈ Top ) → 𝐾 = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
6 5 ralimiaa ( ∀ 𝑥𝐴 𝐾 ∈ Top → ∀ 𝑥𝐴 𝐾 = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
7 6 adantl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → ∀ 𝑥𝐴 𝐾 = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
8 ixpeq2 ( ∀ 𝑥𝐴 𝐾 = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) → X 𝑥𝐴 𝐾 = X 𝑥𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
9 7 8 syl ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → X 𝑥𝐴 𝐾 = X 𝑥𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
10 nffvmpt1 𝑥 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 )
11 10 nfuni 𝑥 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 )
12 nfcv 𝑦 ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 )
13 fveq2 ( 𝑦 = 𝑥 → ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 ) = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
14 13 unieqd ( 𝑦 = 𝑥 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 ) = ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 ) )
15 11 12 14 cbvixp X 𝑦𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 ) = X 𝑥𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑥 )
16 9 15 eqtr4di ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → X 𝑥𝐴 𝐾 = X 𝑦𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 ) )
17 2 fmpt ( ∀ 𝑥𝐴 𝐾 ∈ Top ↔ ( 𝑥𝐴𝐾 ) : 𝐴 ⟶ Top )
18 1 ptuni ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝐾 ) : 𝐴 ⟶ Top ) → X 𝑦𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 ) = 𝐽 )
19 17 18 sylan2b ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → X 𝑦𝐴 ( ( 𝑥𝐴𝐾 ) ‘ 𝑦 ) = 𝐽 )
20 16 19 eqtrd ( ( 𝐴𝑉 ∧ ∀ 𝑥𝐴 𝐾 ∈ Top ) → X 𝑥𝐴 𝐾 = 𝐽 )