Step |
Hyp |
Ref |
Expression |
1 |
|
ptunimpt.j |
⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) |
2 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) |
3 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) = 𝐾 ) |
4 |
3
|
eqcomd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top ) → 𝐾 = ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
5 |
4
|
unieqd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top ) → ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
6 |
5
|
ralimiaa |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀ 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → ∀ 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
8 |
|
ixpeq2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = X 𝑥 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = X 𝑥 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
10 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) |
11 |
10
|
nfuni |
⊢ Ⅎ 𝑥 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) |
13 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
14 |
13
|
unieqd |
⊢ ( 𝑦 = 𝑥 → ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
15 |
11 12 14
|
cbvixp |
⊢ X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = X 𝑥 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) |
16 |
9 15
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) ) |
17 |
2
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) |
18 |
1
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ∪ 𝐽 ) |
19 |
17 18
|
sylan2b |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ∪ 𝐽 ) |
20 |
16 19
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |