| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptval2.1 | ⊢ 𝐽  =  ( ∏t ‘ 𝐹 ) | 
						
							| 2 |  | ptval2.2 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 3 |  | ptval2.3 | ⊢ 𝐺  =  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 4 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top  →  𝐹  Fn  𝐴 ) | 
						
							| 5 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 6 | 5 | ptval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  ( ∏t ‘ 𝐹 )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 7 | 1 6 | eqtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹  Fn  𝐴 )  →  𝐽  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 8 | 4 7 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐽  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 9 |  | eqid | ⊢ X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) | 
						
							| 10 | 5 9 | ptbasfi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 11 | 1 | ptuni | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  ∪  𝐽 ) | 
						
							| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  𝑋 ) | 
						
							| 13 | 12 | sneqd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) }  =  { 𝑋 } ) | 
						
							| 14 | 12 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) )  →  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  =  𝑋 ) | 
						
							| 15 | 14 | mpteq1d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 16 | 15 | cnveqd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) )  →  ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 17 | 16 | imaeq1d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  ∧  𝑘  ∈  𝐴  ∧  𝑢  ∈  ( 𝐹 ‘ 𝑘 ) )  →  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 18 | 17 | mpoeq3dva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  𝑋  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 19 | 18 3 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  𝐺 ) | 
						
							| 20 | 19 | rneqd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ran  𝐺 ) | 
						
							| 21 | 13 20 | uneq12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( { X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  =  ( { 𝑋 }  ∪  ran  𝐺 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( fi ‘ ( { X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝐴 ,  𝑢  ∈  ( 𝐹 ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝐴 ∪  ( 𝐹 ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  =  ( fi ‘ ( { 𝑋 }  ∪  ran  𝐺 ) ) ) | 
						
							| 23 | 10 22 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { 𝑋 }  ∪  ran  𝐺 ) ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝐴  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( 𝐹 ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 ) ) } )  =  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ran  𝐺 ) ) ) ) | 
						
							| 25 | 8 24 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐹 : 𝐴 ⟶ Top )  →  𝐽  =  ( topGen ‘ ( fi ‘ ( { 𝑋 }  ∪  ran  𝐺 ) ) ) ) |