| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwexg | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  𝐴  ∈  V ) | 
						
							| 2 |  | ovexd | ⊢ ( 𝐴  ∈  𝑉  →  ( { ∅ ,  { ∅ } }  ↑m  𝐴 )  ∈  V ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ∅  ∈  V ) | 
						
							| 6 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  { ∅ }  ∈  V ) | 
						
							| 8 |  | 0nep0 | ⊢ ∅  ≠  { ∅ } | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ∅  ≠  { ∅ } ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↦  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  { ∅ } ,  ∅ ) ) )  =  ( 𝑥  ∈  𝒫  𝐴  ↦  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  { ∅ } ,  ∅ ) ) ) | 
						
							| 11 | 3 5 7 9 10 | pw2f1o | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑥  ∈  𝒫  𝐴  ↦  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  { ∅ } ,  ∅ ) ) ) : 𝒫  𝐴 –1-1-onto→ ( { ∅ ,  { ∅ } }  ↑m  𝐴 ) ) | 
						
							| 12 |  | f1oen2g | ⊢ ( ( 𝒫  𝐴  ∈  V  ∧  ( { ∅ ,  { ∅ } }  ↑m  𝐴 )  ∈  V  ∧  ( 𝑥  ∈  𝒫  𝐴  ↦  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  { ∅ } ,  ∅ ) ) ) : 𝒫  𝐴 –1-1-onto→ ( { ∅ ,  { ∅ } }  ↑m  𝐴 ) )  →  𝒫  𝐴  ≈  ( { ∅ ,  { ∅ } }  ↑m  𝐴 ) ) | 
						
							| 13 | 1 2 11 12 | syl3anc | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  𝐴  ≈  ( { ∅ ,  { ∅ } }  ↑m  𝐴 ) ) | 
						
							| 14 |  | df2o2 | ⊢ 2o  =  { ∅ ,  { ∅ } } | 
						
							| 15 | 14 | oveq1i | ⊢ ( 2o  ↑m  𝐴 )  =  ( { ∅ ,  { ∅ } }  ↑m  𝐴 ) | 
						
							| 16 | 13 15 | breqtrrdi | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  𝐴  ≈  ( 2o  ↑m  𝐴 ) ) |