Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
2 |
|
ovexd |
⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ , { ∅ } } ↑m 𝐴 ) ∈ V ) |
3 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∅ ∈ V ) |
6 |
|
p0ex |
⊢ { ∅ } ∈ V |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → { ∅ } ∈ V ) |
8 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
9 |
8
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∅ ≠ { ∅ } ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) |
11 |
3 5 7 9 10
|
pw2f1o |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) : 𝒫 𝐴 –1-1-onto→ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) |
12 |
|
f1oen2g |
⊢ ( ( 𝒫 𝐴 ∈ V ∧ ( { ∅ , { ∅ } } ↑m 𝐴 ) ∈ V ∧ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , { ∅ } , ∅ ) ) ) : 𝒫 𝐴 –1-1-onto→ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) → 𝒫 𝐴 ≈ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) |
13 |
1 2 11 12
|
syl3anc |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( { ∅ , { ∅ } } ↑m 𝐴 ) ) |
14 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
15 |
14
|
oveq1i |
⊢ ( 2o ↑m 𝐴 ) = ( { ∅ , { ∅ } } ↑m 𝐴 ) |
16 |
13 15
|
breqtrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |