| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pw2f1o.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | pw2f1o.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | pw2f1o.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑊 ) | 
						
							| 4 |  | pw2f1o.4 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 5 |  | pw2f1o.5 | ⊢ 𝐹  =  ( 𝑥  ∈  𝒫  𝐴  ↦  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) ) | 
						
							| 7 | 1 2 3 4 | pw2f1olem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) ) )  ↔  ( ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ∧  𝑥  =  ( ◡ ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  “  { 𝐶 } ) ) ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) ) ) )  →  ( ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ∧  𝑥  =  ( ◡ ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  “  { 𝐶 } ) ) ) | 
						
							| 9 | 6 8 | mpanr2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴 )  →  ( ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ∧  𝑥  =  ( ◡ ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  “  { 𝐶 } ) ) ) | 
						
							| 10 | 9 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  𝐴 )  →  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) )  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 ) ) | 
						
							| 11 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 12 | 11 | cnvex | ⊢ ◡ 𝑦  ∈  V | 
						
							| 13 | 12 | imaex | ⊢ ( ◡ 𝑦  “  { 𝐶 } )  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 ) )  →  ( ◡ 𝑦  “  { 𝐶 } )  ∈  V ) | 
						
							| 15 | 1 2 3 4 | pw2f1olem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝒫  𝐴  ∧  𝑦  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑥 ,  𝐶 ,  𝐵 ) ) )  ↔  ( 𝑦  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ∧  𝑥  =  ( ◡ 𝑦  “  { 𝐶 } ) ) ) ) | 
						
							| 16 | 5 10 14 15 | f1od | ⊢ ( 𝜑  →  𝐹 : 𝒫  𝐴 –1-1-onto→ ( { 𝐵 ,  𝐶 }  ↑m  𝐴 ) ) |