Step |
Hyp |
Ref |
Expression |
1 |
|
pw2f1o2.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
2
|
cnvex |
⊢ ◡ 𝑥 ∈ V |
4 |
|
imaexg |
⊢ ( ◡ 𝑥 ∈ V → ( ◡ 𝑥 “ { 1o } ) ∈ V ) |
5 |
3 4
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( 2o ↑m 𝐴 ) ) → ( ◡ 𝑥 “ { 1o } ) ∈ V ) |
6 |
|
mptexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ∈ V ) |
8 |
|
2on |
⊢ 2o ∈ On |
9 |
|
elmapg |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 2o ) ) |
10 |
8 9
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 2o ) ) |
11 |
10
|
anbi1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ↔ ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ) ) |
12 |
|
1oex |
⊢ 1o ∈ V |
13 |
12
|
sucid |
⊢ 1o ∈ suc 1o |
14 |
|
df-2o |
⊢ 2o = suc 1o |
15 |
13 14
|
eleqtrri |
⊢ 1o ∈ 2o |
16 |
|
0ex |
⊢ ∅ ∈ V |
17 |
16
|
prid1 |
⊢ ∅ ∈ { ∅ , { ∅ } } |
18 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
19 |
17 18
|
eleqtrri |
⊢ ∅ ∈ 2o |
20 |
15 19
|
ifcli |
⊢ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ∈ 2o |
21 |
20
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝐴 if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ∈ 2o |
22 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) |
23 |
22
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝐴 if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ∈ 2o ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o ) |
24 |
21 23
|
mpbi |
⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o |
25 |
|
simpr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) |
26 |
25
|
feq1d |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑥 : 𝐴 ⟶ 2o ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o ) ) |
27 |
24 26
|
mpbiri |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → 𝑥 : 𝐴 ⟶ 2o ) |
28 |
|
iftrue |
⊢ ( 𝑤 ∈ 𝑦 → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
29 |
|
noel |
⊢ ¬ ∅ ∈ ∅ |
30 |
|
iffalse |
⊢ ( ¬ 𝑤 ∈ 𝑦 → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = ∅ ) |
31 |
30
|
eqeq1d |
⊢ ( ¬ 𝑤 ∈ 𝑦 → ( if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ↔ ∅ = 1o ) ) |
32 |
|
0lt1o |
⊢ ∅ ∈ 1o |
33 |
|
eleq2 |
⊢ ( ∅ = 1o → ( ∅ ∈ ∅ ↔ ∅ ∈ 1o ) ) |
34 |
32 33
|
mpbiri |
⊢ ( ∅ = 1o → ∅ ∈ ∅ ) |
35 |
31 34
|
syl6bi |
⊢ ( ¬ 𝑤 ∈ 𝑦 → ( if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o → ∅ ∈ ∅ ) ) |
36 |
29 35
|
mtoi |
⊢ ( ¬ 𝑤 ∈ 𝑦 → ¬ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
37 |
36
|
con4i |
⊢ ( if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o → 𝑤 ∈ 𝑦 ) |
38 |
28 37
|
impbii |
⊢ ( 𝑤 ∈ 𝑦 ↔ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
39 |
25
|
fveq1d |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) |
40 |
|
elequ1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) |
41 |
40
|
ifbid |
⊢ ( 𝑧 = 𝑤 → if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
42 |
12 16
|
ifcli |
⊢ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ∈ V |
43 |
41 22 42
|
fvmpt |
⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
44 |
39 43
|
sylan9eq |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
45 |
44
|
eqeq1d |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) ) |
46 |
38 45
|
bitr4id |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
47 |
|
fvex |
⊢ ( 𝑥 ‘ 𝑤 ) ∈ V |
48 |
47
|
elsn |
⊢ ( ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ↔ ( 𝑥 ‘ 𝑤 ) = 1o ) |
49 |
46 48
|
bitr4di |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) |
50 |
49
|
pm5.32da |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦 ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) ) |
51 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴 ) ) |
53 |
52
|
pm4.71rd |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦 ) ) ) |
54 |
|
ffn |
⊢ ( 𝑥 : 𝐴 ⟶ 2o → 𝑥 Fn 𝐴 ) |
55 |
|
elpreima |
⊢ ( 𝑥 Fn 𝐴 → ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) ) |
56 |
27 54 55
|
3syl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) ) |
57 |
50 53 56
|
3bitr4d |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ) ) |
58 |
57
|
eqrdv |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) |
59 |
27 58
|
jca |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ) |
60 |
|
simpr |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) |
61 |
|
cnvimass |
⊢ ( ◡ 𝑥 “ { 1o } ) ⊆ dom 𝑥 |
62 |
|
fdm |
⊢ ( 𝑥 : 𝐴 ⟶ 2o → dom 𝑥 = 𝐴 ) |
63 |
62
|
adantr |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → dom 𝑥 = 𝐴 ) |
64 |
61 63
|
sseqtrid |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ( ◡ 𝑥 “ { 1o } ) ⊆ 𝐴 ) |
65 |
60 64
|
eqsstrd |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑦 ⊆ 𝐴 ) |
66 |
|
simplr |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) |
67 |
66
|
eleq2d |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ) ) |
68 |
54
|
adantr |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑥 Fn 𝐴 ) |
69 |
|
fnbrfvb |
⊢ ( ( 𝑥 Fn 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ 𝑤 𝑥 1o ) ) |
70 |
68 69
|
sylan |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ 𝑤 𝑥 1o ) ) |
71 |
|
1on |
⊢ 1o ∈ On |
72 |
|
vex |
⊢ 𝑤 ∈ V |
73 |
72
|
eliniseg |
⊢ ( 1o ∈ On → ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ 𝑤 𝑥 1o ) ) |
74 |
71 73
|
ax-mp |
⊢ ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ 𝑤 𝑥 1o ) |
75 |
70 74
|
bitr4di |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ) ) |
76 |
67 75
|
bitr4d |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
77 |
76
|
biimpa |
⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = 1o ) |
78 |
28
|
adantl |
⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝑦 ) → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
79 |
77 78
|
eqtr4d |
⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
80 |
|
ffvelrn |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ 2o ) |
81 |
80
|
adantlr |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ 2o ) |
82 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
83 |
81 82
|
eleqtrdi |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ { ∅ , 1o } ) |
84 |
47
|
elpr |
⊢ ( ( 𝑥 ‘ 𝑤 ) ∈ { ∅ , 1o } ↔ ( ( 𝑥 ‘ 𝑤 ) = ∅ ∨ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
85 |
83 84
|
sylib |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = ∅ ∨ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
86 |
85
|
ord |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ‘ 𝑤 ) = ∅ → ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
87 |
86 76
|
sylibrd |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ‘ 𝑤 ) = ∅ → 𝑤 ∈ 𝑦 ) ) |
88 |
87
|
con1d |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ¬ 𝑤 ∈ 𝑦 → ( 𝑥 ‘ 𝑤 ) = ∅ ) ) |
89 |
88
|
imp |
⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = ∅ ) |
90 |
30
|
adantl |
⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 ∈ 𝑦 ) → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = ∅ ) |
91 |
89 90
|
eqtr4d |
⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
92 |
79 91
|
pm2.61dan |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
93 |
43
|
adantl |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
94 |
92 93
|
eqtr4d |
⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) |
95 |
94
|
ralrimiva |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) |
96 |
|
ffn |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) Fn 𝐴 ) |
97 |
24 96
|
ax-mp |
⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) Fn 𝐴 |
98 |
|
eqfnfv |
⊢ ( ( 𝑥 Fn 𝐴 ∧ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) Fn 𝐴 ) → ( 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) ) |
99 |
68 97 98
|
sylancl |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ( 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) ) |
100 |
95 99
|
mpbird |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) |
101 |
65 100
|
jca |
⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) |
102 |
59 101
|
impbii |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ↔ ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ) |
103 |
11 102
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |
104 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
105 |
104
|
anbi1i |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) |
106 |
103 105
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |
107 |
1 5 7 106
|
f1ocnvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |