| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pw2f1o.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | pw2f1o.2 | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 3 |  | pw2f1o.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑊 ) | 
						
							| 4 |  | pw2f1o.4 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 5 |  | prid2g | ⊢ ( 𝐶  ∈  𝑊  →  𝐶  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  𝐶  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 7 |  | prid1g | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  𝐵  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 9 | 6 8 | ifcld | ⊢ ( 𝜑  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 11 | 10 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) | 
						
							| 13 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) | 
						
							| 14 | 13 | feq1d | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ↔  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) | 
						
							| 16 |  | iftrue | ⊢ ( 𝑥  ∈  𝑆  →  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐶 ) | 
						
							| 17 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ≠  𝐶 ) | 
						
							| 18 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝑆  →  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐵 ) | 
						
							| 19 | 18 | neeq1d | ⊢ ( ¬  𝑥  ∈  𝑆  →  ( if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  ≠  𝐶  ↔  𝐵  ≠  𝐶 ) ) | 
						
							| 20 | 17 19 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ¬  𝑥  ∈  𝑆  →  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  ≠  𝐶 ) ) | 
						
							| 21 | 20 | necon4bd | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐶  →  𝑥  ∈  𝑆 ) ) | 
						
							| 22 | 16 21 | impbid2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝑆  ↔  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐶 ) ) | 
						
							| 23 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) | 
						
							| 24 | 23 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  ( ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ‘ 𝑥 ) ) | 
						
							| 25 |  | id | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐴 ) | 
						
							| 26 | 6 8 | ifcld | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 28 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝑆  ↔  𝑥  ∈  𝑆 ) ) | 
						
							| 29 | 28 | ifbid | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 31 | 29 30 | fvmptg | ⊢ ( ( 𝑥  ∈  𝐴  ∧  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  ∈  { 𝐵 ,  𝐶 } )  →  ( ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 32 | 25 27 31 | syl2anr | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 33 | 24 32 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  =  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑥 )  =  𝐶  ↔  if ( 𝑥  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐶 ) ) | 
						
							| 35 | 22 34 | bitr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝑆  ↔  ( 𝐺 ‘ 𝑥 )  =  𝐶 ) ) | 
						
							| 36 | 35 | pm5.32da | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝑆 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 37 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  𝑆  ⊆  𝐴 ) | 
						
							| 38 | 37 | sseld | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝑥  ∈  𝑆  →  𝑥  ∈  𝐴 ) ) | 
						
							| 39 | 38 | pm4.71rd | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝑆 ) ) ) | 
						
							| 40 |  | ffn | ⊢ ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  →  𝐺  Fn  𝐴 ) | 
						
							| 41 | 15 40 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 42 |  | fniniseg | ⊢ ( 𝐺  Fn  𝐴  →  ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝐶 } )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  { 𝐶 } )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑥 )  =  𝐶 ) ) ) | 
						
							| 44 | 36 39 43 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝑥  ∈  𝑆  ↔  𝑥  ∈  ( ◡ 𝐺  “  { 𝐶 } ) ) ) | 
						
							| 45 | 44 | eqrdv | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) | 
						
							| 46 | 15 45 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) )  →  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) | 
						
							| 48 |  | cnvimass | ⊢ ( ◡ 𝐺  “  { 𝐶 } )  ⊆  dom  𝐺 | 
						
							| 49 |  | fdm | ⊢ ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  →  dom  𝐺  =  𝐴 ) | 
						
							| 50 | 49 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  dom  𝐺  =  𝐴 ) | 
						
							| 51 | 48 50 | sseqtrid | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  ( ◡ 𝐺  “  { 𝐶 } )  ⊆  𝐴 ) | 
						
							| 52 | 47 51 | eqsstrd | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  𝑆  ⊆  𝐴 ) | 
						
							| 53 | 40 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 54 |  | dffn5 | ⊢ ( 𝐺  Fn  𝐴  ↔  𝐺  =  ( 𝑦  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 55 | 53 54 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  𝐺  =  ( 𝑦  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 56 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) | 
						
							| 57 | 56 | eleq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ∈  𝑆  ↔  𝑦  ∈  ( ◡ 𝐺  “  { 𝐶 } ) ) ) | 
						
							| 58 |  | fniniseg | ⊢ ( 𝐺  Fn  𝐴  →  ( 𝑦  ∈  ( ◡ 𝐺  “  { 𝐶 } )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) ) | 
						
							| 59 | 53 58 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  ( 𝑦  ∈  ( ◡ 𝐺  “  { 𝐶 } )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) ) | 
						
							| 60 | 59 | baibd | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ∈  ( ◡ 𝐺  “  { 𝐶 } )  ↔  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 61 | 57 60 | bitrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ∈  𝑆  ↔  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 62 | 61 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) | 
						
							| 63 |  | iftrue | ⊢ ( 𝑦  ∈  𝑆  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐶 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ∈  𝑆 )  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐶 ) | 
						
							| 65 | 62 64 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑦 )  =  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 66 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) | 
						
							| 67 | 66 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑦 )  ∈  { 𝐵 ,  𝐶 } ) | 
						
							| 68 |  | fvex | ⊢ ( 𝐺 ‘ 𝑦 )  ∈  V | 
						
							| 69 | 68 | elpr | ⊢ ( ( 𝐺 ‘ 𝑦 )  ∈  { 𝐵 ,  𝐶 }  ↔  ( ( 𝐺 ‘ 𝑦 )  =  𝐵  ∨  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 70 | 67 69 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑦 )  =  𝐵  ∨  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 71 | 70 | ord | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  ( 𝐺 ‘ 𝑦 )  =  𝐵  →  ( 𝐺 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 72 | 71 61 | sylibrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  ( 𝐺 ‘ 𝑦 )  =  𝐵  →  𝑦  ∈  𝑆 ) ) | 
						
							| 73 | 72 | con1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑦  ∈  𝑆  →  ( 𝐺 ‘ 𝑦 )  =  𝐵 ) ) | 
						
							| 74 | 73 | imp | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑦 )  =  𝐵 ) | 
						
							| 75 |  | iffalse | ⊢ ( ¬  𝑦  ∈  𝑆  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐵 ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ∈  𝑆 )  →  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  𝐵 ) | 
						
							| 77 | 74 76 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  ∧  ¬  𝑦  ∈  𝑆 )  →  ( 𝐺 ‘ 𝑦 )  =  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 78 | 65 77 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑦 )  =  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 79 | 78 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  ( 𝑦  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑦 ) )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) | 
						
							| 80 | 55 79 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) | 
						
							| 81 | 52 80 | jca | ⊢ ( ( 𝜑  ∧  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) )  →  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) ) | 
						
							| 82 | 46 81 | impbida | ⊢ ( 𝜑  →  ( ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) )  ↔  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) ) ) | 
						
							| 83 |  | elpw2g | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑆  ∈  𝒫  𝐴  ↔  𝑆  ⊆  𝐴 ) ) | 
						
							| 84 | 1 83 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝒫  𝐴  ↔  𝑆  ⊆  𝐴 ) ) | 
						
							| 85 |  | eleq1w | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝑆  ↔  𝑦  ∈  𝑆 ) ) | 
						
							| 86 | 85 | ifbid | ⊢ ( 𝑧  =  𝑦  →  if ( 𝑧  ∈  𝑆 ,  𝐶 ,  𝐵 )  =  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 87 | 86 | cbvmptv | ⊢ ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑆 ,  𝐶 ,  𝐵 ) )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) | 
						
							| 88 | 87 | a1i | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑆 ,  𝐶 ,  𝐵 ) )  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) | 
						
							| 89 | 88 | eqeq2d | ⊢ ( 𝜑  →  ( 𝐺  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑆 ,  𝐶 ,  𝐵 ) )  ↔  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) ) | 
						
							| 90 | 84 89 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝑆  ∈  𝒫  𝐴  ∧  𝐺  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) )  ↔  ( 𝑆  ⊆  𝐴  ∧  𝐺  =  ( 𝑦  ∈  𝐴  ↦  if ( 𝑦  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) ) ) ) | 
						
							| 91 |  | prex | ⊢ { 𝐵 ,  𝐶 }  ∈  V | 
						
							| 92 |  | elmapg | ⊢ ( ( { 𝐵 ,  𝐶 }  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ↔  𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) ) | 
						
							| 93 | 91 1 92 | sylancr | ⊢ ( 𝜑  →  ( 𝐺  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ↔  𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 } ) ) | 
						
							| 94 | 93 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝐺  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) )  ↔  ( 𝐺 : 𝐴 ⟶ { 𝐵 ,  𝐶 }  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) ) ) | 
						
							| 95 | 82 90 94 | 3bitr4d | ⊢ ( 𝜑  →  ( ( 𝑆  ∈  𝒫  𝐴  ∧  𝐺  =  ( 𝑧  ∈  𝐴  ↦  if ( 𝑧  ∈  𝑆 ,  𝐶 ,  𝐵 ) ) )  ↔  ( 𝐺  ∈  ( { 𝐵 ,  𝐶 }  ↑m  𝐴 )  ∧  𝑆  =  ( ◡ 𝐺  “  { 𝐶 } ) ) ) ) |