| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwcfsdom.1 | ⊢ 𝐻  =  ( 𝑦  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  ↦  ( har ‘ ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 2 |  | onzsl | ⊢ ( 𝐴  ∈  On  ↔  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  ∨  ( 𝐴  ∈  V  ∧  Lim  𝐴 ) ) ) | 
						
							| 3 | 2 | biimpi | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  ∨  ( 𝐴  ∈  V  ∧  Lim  𝐴 ) ) ) | 
						
							| 4 |  | cfom | ⊢ ( cf ‘ ω )  =  ω | 
						
							| 5 |  | aleph0 | ⊢ ( ℵ ‘ ∅ )  =  ω | 
						
							| 6 | 5 | fveq2i | ⊢ ( cf ‘ ( ℵ ‘ ∅ ) )  =  ( cf ‘ ω ) | 
						
							| 7 | 4 6 5 | 3eqtr4i | ⊢ ( cf ‘ ( ℵ ‘ ∅ ) )  =  ( ℵ ‘ ∅ ) | 
						
							| 8 |  | 2fveq3 | ⊢ ( 𝐴  =  ∅  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( cf ‘ ( ℵ ‘ ∅ ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝐴  =  ∅  →  ( ℵ ‘ 𝐴 )  =  ( ℵ ‘ ∅ ) ) | 
						
							| 10 | 7 8 9 | 3eqtr4a | ⊢ ( 𝐴  =  ∅  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( ℵ ‘ 𝐴 ) ) | 
						
							| 11 |  | fvex | ⊢ ( ℵ ‘ 𝐴 )  ∈  V | 
						
							| 12 | 11 | canth2 | ⊢ ( ℵ ‘ 𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 ) | 
						
							| 13 | 11 | pw2en | ⊢ 𝒫  ( ℵ ‘ 𝐴 )  ≈  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) | 
						
							| 14 |  | sdomentr | ⊢ ( ( ( ℵ ‘ 𝐴 )  ≺  𝒫  ( ℵ ‘ 𝐴 )  ∧  𝒫  ( ℵ ‘ 𝐴 )  ≈  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 15 | 12 13 14 | mp2an | ⊢ ( ℵ ‘ 𝐴 )  ≺  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) ) | 
						
							| 16 |  | alephon | ⊢ ( ℵ ‘ 𝐴 )  ∈  On | 
						
							| 17 |  | alephgeom | ⊢ ( 𝐴  ∈  On  ↔  ω  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 18 |  | omelon | ⊢ ω  ∈  On | 
						
							| 19 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 20 |  | onelss | ⊢ ( ω  ∈  On  →  ( 2o  ∈  ω  →  2o  ⊆  ω ) ) | 
						
							| 21 | 18 19 20 | mp2 | ⊢ 2o  ⊆  ω | 
						
							| 22 |  | sstr | ⊢ ( ( 2o  ⊆  ω  ∧  ω  ⊆  ( ℵ ‘ 𝐴 ) )  →  2o  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 23 | 21 22 | mpan | ⊢ ( ω  ⊆  ( ℵ ‘ 𝐴 )  →  2o  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 24 | 17 23 | sylbi | ⊢ ( 𝐴  ∈  On  →  2o  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 25 |  | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 )  ∈  On  →  ( 2o  ⊆  ( ℵ ‘ 𝐴 )  →  2o  ≼  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 26 | 16 24 25 | mpsyl | ⊢ ( 𝐴  ∈  On  →  2o  ≼  ( ℵ ‘ 𝐴 ) ) | 
						
							| 27 |  | mapdom1 | ⊢ ( 2o  ≼  ( ℵ ‘ 𝐴 )  →  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝐴  ∈  On  →  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 29 |  | sdomdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 )  ≺  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ∧  ( 2o  ↑m  ( ℵ ‘ 𝐴 ) )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 30 | 15 28 29 | sylancr | ⊢ ( 𝐴  ∈  On  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( ℵ ‘ 𝐴 )  →  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  =  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 32 | 31 | breq2d | ⊢ ( ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( ℵ ‘ 𝐴 )  →  ( ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  ↔  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 33 | 30 32 | syl5ibrcom | ⊢ ( 𝐴  ∈  On  →  ( ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( ℵ ‘ 𝐴 )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 34 | 10 33 | syl5 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  ∅  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 35 |  | alephreg | ⊢ ( cf ‘ ( ℵ ‘ suc  𝑥 ) )  =  ( ℵ ‘ suc  𝑥 ) | 
						
							| 36 |  | 2fveq3 | ⊢ ( 𝐴  =  suc  𝑥  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( cf ‘ ( ℵ ‘ suc  𝑥 ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝐴  =  suc  𝑥  →  ( ℵ ‘ 𝐴 )  =  ( ℵ ‘ suc  𝑥 ) ) | 
						
							| 38 | 35 36 37 | 3eqtr4a | ⊢ ( 𝐴  =  suc  𝑥  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( ℵ ‘ 𝐴 ) ) | 
						
							| 39 | 38 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( ℵ ‘ 𝐴 ) ) | 
						
							| 40 | 39 33 | syl5 | ⊢ ( 𝐴  ∈  On  →  ( ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 41 |  | limelon | ⊢ ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  𝐴  ∈  On ) | 
						
							| 42 |  | ffn | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  𝑓  Fn  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 43 |  | fnrnfv | ⊢ ( 𝑓  Fn  ( cf ‘ ( ℵ ‘ 𝐴 ) )  →  ran  𝑓  =  { 𝑦  ∣  ∃ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦  =  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 44 | 43 | unieqd | ⊢ ( 𝑓  Fn  ( cf ‘ ( ℵ ‘ 𝐴 ) )  →  ∪  ran  𝑓  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦  =  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 45 | 42 44 | syl | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ∪  ran  𝑓  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦  =  ( 𝑓 ‘ 𝑥 ) } ) | 
						
							| 46 |  | fvex | ⊢ ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 47 | 46 | dfiun2 | ⊢ ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑦  =  ( 𝑓 ‘ 𝑥 ) } | 
						
							| 48 | 45 47 | eqtr4di | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ∪  ran  𝑓  =  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 49 | 48 | ad2antrl | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  ran  𝑓  =  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 50 |  | fnfvelrn | ⊢ ( ( 𝑓  Fn  ( cf ‘ ( ℵ ‘ 𝐴 ) )  ∧  𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑤 )  ∈  ran  𝑓 ) | 
						
							| 51 | 42 50 | sylan | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑤 )  ∈  ran  𝑓 ) | 
						
							| 52 |  | sseq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑤 )  →  ( 𝑧  ⊆  𝑦  ↔  𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 53 | 52 | rspcev | ⊢ ( ( ( 𝑓 ‘ 𝑤 )  ∈  ran  𝑓  ∧  𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) | 
						
							| 54 | 51 53 | sylan | ⊢ ( ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  ∧  𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) | 
						
							| 55 | 54 | rexlimdva2 | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ( ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 )  →  ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) ) | 
						
							| 56 | 55 | ralimdv | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ( ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 )  →  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) | 
						
							| 59 |  | alephislim | ⊢ ( 𝐴  ∈  On  ↔  Lim  ( ℵ ‘ 𝐴 ) ) | 
						
							| 60 | 59 | biimpi | ⊢ ( 𝐴  ∈  On  →  Lim  ( ℵ ‘ 𝐴 ) ) | 
						
							| 61 |  | frn | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ran  𝑓  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  ran  𝑓  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 63 |  | coflim | ⊢ ( ( Lim  ( ℵ ‘ 𝐴 )  ∧  ran  𝑓  ⊆  ( ℵ ‘ 𝐴 ) )  →  ( ∪  ran  𝑓  =  ( ℵ ‘ 𝐴 )  ↔  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) ) | 
						
							| 64 | 60 62 63 | syl2an | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ( ∪  ran  𝑓  =  ( ℵ ‘ 𝐴 )  ↔  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑦  ∈  ran  𝑓 𝑧  ⊆  𝑦 ) ) | 
						
							| 65 | 58 64 | mpbird | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  ran  𝑓  =  ( ℵ ‘ 𝐴 ) ) | 
						
							| 66 | 49 65 | eqtr3d | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  =  ( ℵ ‘ 𝐴 ) ) | 
						
							| 67 |  | ffvelcdm | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 68 | 16 | oneli | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  On ) | 
						
							| 69 |  | harcard | ⊢ ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) )  =  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 70 |  | iscard | ⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) )  =  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ↔  ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  On  ∧  ∀ 𝑦  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 71 | 70 | simprbi | ⊢ ( ( card ‘ ( har ‘ ( 𝑓 ‘ 𝑥 ) ) )  =  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  →  ∀ 𝑦  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 72 | 69 71 | ax-mp | ⊢ ∀ 𝑦  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 73 |  | domrefg | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  V  →  ( 𝑓 ‘ 𝑥 )  ≼  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 74 | 46 73 | ax-mp | ⊢ ( 𝑓 ‘ 𝑥 )  ≼  ( 𝑓 ‘ 𝑥 ) | 
						
							| 75 |  | elharval | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ↔  ( ( 𝑓 ‘ 𝑥 )  ∈  On  ∧  ( 𝑓 ‘ 𝑥 )  ≼  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 76 | 75 | biimpri | ⊢ ( ( ( 𝑓 ‘ 𝑥 )  ∈  On  ∧  ( 𝑓 ‘ 𝑥 )  ≼  ( 𝑓 ‘ 𝑥 ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 77 | 74 76 | mpan2 | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  On  →  ( 𝑓 ‘ 𝑥 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 78 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑦  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ↔  ( 𝑓 ‘ 𝑥 )  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 79 | 78 | rspccv | ⊢ ( ∀ 𝑦  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) 𝑦  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  →  ( 𝑓 ‘ 𝑥 )  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 80 | 72 77 79 | mpsyl | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  On  →  ( 𝑓 ‘ 𝑥 )  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 81 | 67 68 80 | 3syl | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑥 )  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 82 |  | harcl | ⊢ ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  On | 
						
							| 83 |  | 2fveq3 | ⊢ ( 𝑦  =  𝑥  →  ( har ‘ ( 𝑓 ‘ 𝑦 ) )  =  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 84 | 83 1 | fvmptg | ⊢ ( ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  ∧  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  On )  →  ( 𝐻 ‘ 𝑥 )  =  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 85 | 82 84 | mpan2 | ⊢ ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  →  ( 𝐻 ‘ 𝑥 )  =  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 86 | 85 | breq2d | ⊢ ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  →  ( ( 𝑓 ‘ 𝑥 )  ≺  ( 𝐻 ‘ 𝑥 )  ↔  ( 𝑓 ‘ 𝑥 )  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( ( 𝑓 ‘ 𝑥 )  ≺  ( 𝐻 ‘ 𝑥 )  ↔  ( 𝑓 ‘ 𝑥 )  ≺  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 88 | 81 87 | mpbird | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑥 )  ≺  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 89 | 88 | ralrimiva | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ∀ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  ≺  ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 90 |  | fvex | ⊢ ( cf ‘ ( ℵ ‘ 𝐴 ) )  ∈  V | 
						
							| 91 |  | eqid | ⊢ ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  =  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 ) | 
						
							| 92 |  | eqid | ⊢ X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  =  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) | 
						
							| 93 | 90 91 92 | konigth | ⊢ ( ∀ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  ≺  ( 𝐻 ‘ 𝑥 )  →  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  ≺  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 94 | 89 93 | syl | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  ≺  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 95 | 94 | ad2antrl | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝑓 ‘ 𝑥 )  ≺  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 96 | 66 95 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 97 | 41 96 | sylan | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 ) ) | 
						
							| 98 |  | ovex | ⊢ ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  ∈  V | 
						
							| 99 | 67 | ex | ⊢ ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 100 |  | alephlim | ⊢ ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ℵ ‘ 𝐴 )  =  ∪  𝑦  ∈  𝐴 ( ℵ ‘ 𝑦 ) ) | 
						
							| 101 | 100 | eleq2d | ⊢ ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 )  ↔  ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑦  ∈  𝐴 ( ℵ ‘ 𝑦 ) ) ) | 
						
							| 102 |  | eliun | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑦  ∈  𝐴 ( ℵ ‘ 𝑦 )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝑦 ) ) | 
						
							| 103 |  | alephcard | ⊢ ( card ‘ ( ℵ ‘ 𝑦 ) )  =  ( ℵ ‘ 𝑦 ) | 
						
							| 104 | 103 | eleq2i | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( card ‘ ( ℵ ‘ 𝑦 ) )  ↔  ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝑦 ) ) | 
						
							| 105 |  | cardsdomelir | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( card ‘ ( ℵ ‘ 𝑦 ) )  →  ( 𝑓 ‘ 𝑥 )  ≺  ( ℵ ‘ 𝑦 ) ) | 
						
							| 106 | 104 105 | sylbir | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝑦 )  →  ( 𝑓 ‘ 𝑥 )  ≺  ( ℵ ‘ 𝑦 ) ) | 
						
							| 107 |  | elharval | ⊢ ( ( ℵ ‘ 𝑦 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ↔  ( ( ℵ ‘ 𝑦 )  ∈  On  ∧  ( ℵ ‘ 𝑦 )  ≼  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 108 | 107 | simprbi | ⊢ ( ( ℵ ‘ 𝑦 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  →  ( ℵ ‘ 𝑦 )  ≼  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 109 |  | domnsym | ⊢ ( ( ℵ ‘ 𝑦 )  ≼  ( 𝑓 ‘ 𝑥 )  →  ¬  ( 𝑓 ‘ 𝑥 )  ≺  ( ℵ ‘ 𝑦 ) ) | 
						
							| 110 | 108 109 | syl | ⊢ ( ( ℵ ‘ 𝑦 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  →  ¬  ( 𝑓 ‘ 𝑥 )  ≺  ( ℵ ‘ 𝑦 ) ) | 
						
							| 111 | 110 | con2i | ⊢ ( ( 𝑓 ‘ 𝑥 )  ≺  ( ℵ ‘ 𝑦 )  →  ¬  ( ℵ ‘ 𝑦 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 112 |  | alephon | ⊢ ( ℵ ‘ 𝑦 )  ∈  On | 
						
							| 113 |  | ontri1 | ⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  On  ∧  ( ℵ ‘ 𝑦 )  ∈  On )  →  ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ⊆  ( ℵ ‘ 𝑦 )  ↔  ¬  ( ℵ ‘ 𝑦 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 114 | 82 112 113 | mp2an | ⊢ ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ⊆  ( ℵ ‘ 𝑦 )  ↔  ¬  ( ℵ ‘ 𝑦 )  ∈  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 115 | 111 114 | sylibr | ⊢ ( ( 𝑓 ‘ 𝑥 )  ≺  ( ℵ ‘ 𝑦 )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ⊆  ( ℵ ‘ 𝑦 ) ) | 
						
							| 116 | 106 115 | syl | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝑦 )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ⊆  ( ℵ ‘ 𝑦 ) ) | 
						
							| 117 |  | alephord2i | ⊢ ( 𝐴  ∈  On  →  ( 𝑦  ∈  𝐴  →  ( ℵ ‘ 𝑦 )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 118 | 117 | imp | ⊢ ( ( 𝐴  ∈  On  ∧  𝑦  ∈  𝐴 )  →  ( ℵ ‘ 𝑦 )  ∈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 119 |  | ontr2 | ⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  On  ∧  ( ℵ ‘ 𝐴 )  ∈  On )  →  ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ⊆  ( ℵ ‘ 𝑦 )  ∧  ( ℵ ‘ 𝑦 )  ∈  ( ℵ ‘ 𝐴 ) )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 120 | 82 16 119 | mp2an | ⊢ ( ( ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ⊆  ( ℵ ‘ 𝑦 )  ∧  ( ℵ ‘ 𝑦 )  ∈  ( ℵ ‘ 𝐴 ) )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 121 | 116 118 120 | syl2anr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝑦 ) )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 122 | 121 | rexlimdva2 | ⊢ ( 𝐴  ∈  On  →  ( ∃ 𝑦  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝑦 )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 123 | 102 122 | biimtrid | ⊢ ( 𝐴  ∈  On  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑦  ∈  𝐴 ( ℵ ‘ 𝑦 )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 124 | 41 123 | syl | ⊢ ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ∪  𝑦  ∈  𝐴 ( ℵ ‘ 𝑦 )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 125 | 101 124 | sylbid | ⊢ ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 126 | 99 125 | sylan9r | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) )  →  ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 127 | 126 | imp | ⊢ ( ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( har ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 128 | 83 | cbvmptv | ⊢ ( 𝑦  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  ↦  ( har ‘ ( 𝑓 ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  ↦  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 129 | 1 128 | eqtri | ⊢ 𝐻  =  ( 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) )  ↦  ( har ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 130 | 127 129 | fmptd | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) )  →  𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) ) | 
						
							| 131 |  | ffvelcdm | ⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 ) ) | 
						
							| 132 |  | onelss | ⊢ ( ( ℵ ‘ 𝐴 )  ∈  On  →  ( ( 𝐻 ‘ 𝑥 )  ∈  ( ℵ ‘ 𝐴 )  →  ( 𝐻 ‘ 𝑥 )  ⊆  ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 133 | 16 131 132 | mpsyl | ⊢ ( ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  ( 𝐻 ‘ 𝑥 )  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 134 | 133 | ralrimiva | ⊢ ( 𝐻 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  →  ∀ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  ( ℵ ‘ 𝐴 ) ) | 
						
							| 135 |  | ss2ixp | ⊢ ( ∀ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  ( ℵ ‘ 𝐴 )  →  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 ) ) | 
						
							| 136 | 90 11 | ixpconst | ⊢ X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( ℵ ‘ 𝐴 )  =  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) | 
						
							| 137 | 135 136 | sseqtrdi | ⊢ ( ∀ 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  ( ℵ ‘ 𝐴 )  →  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 138 | 130 134 137 | 3syl | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) )  →  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 139 |  | ssdomg | ⊢ ( ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  ∈  V  →  ( X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ⊆  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  →  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 140 | 98 138 139 | mpsyl | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 ) )  →  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 141 | 140 | adantrr | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 142 |  | sdomdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 )  ≺  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ∧  X 𝑥  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ( 𝐻 ‘ 𝑥 )  ≼  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 143 | 97 141 142 | syl2anc | ⊢ ( ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  ∧  ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 144 | 143 | expcom | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 145 | 144 | 3adant2 | ⊢ ( ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  Smo  𝑓  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 146 |  | cfsmo | ⊢ ( ( ℵ ‘ 𝐴 )  ∈  On  →  ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  Smo  𝑓  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 147 | 16 146 | ax-mp | ⊢ ∃ 𝑓 ( 𝑓 : ( cf ‘ ( ℵ ‘ 𝐴 ) ) ⟶ ( ℵ ‘ 𝐴 )  ∧  Smo  𝑓  ∧  ∀ 𝑧  ∈  ( ℵ ‘ 𝐴 ) ∃ 𝑤  ∈  ( cf ‘ ( ℵ ‘ 𝐴 ) ) 𝑧  ⊆  ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 148 | 145 147 | exlimiiv | ⊢ ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 149 | 148 | a1i | ⊢ ( 𝐴  ∈  On  →  ( ( 𝐴  ∈  V  ∧  Lim  𝐴 )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 150 | 34 40 149 | 3jaod | ⊢ ( 𝐴  ∈  On  →  ( ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  On 𝐴  =  suc  𝑥  ∨  ( 𝐴  ∈  V  ∧  Lim  𝐴 ) )  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) ) | 
						
							| 151 | 3 150 | mpd | ⊢ ( 𝐴  ∈  On  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 152 |  | alephfnon | ⊢ ℵ  Fn  On | 
						
							| 153 | 152 | fndmi | ⊢ dom  ℵ  =  On | 
						
							| 154 | 153 | eleq2i | ⊢ ( 𝐴  ∈  dom  ℵ  ↔  𝐴  ∈  On ) | 
						
							| 155 |  | ndmfv | ⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ℵ ‘ 𝐴 )  =  ∅ ) | 
						
							| 156 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 157 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 158 | 157 | 0sdom | ⊢ ( ∅  ≺  1o  ↔  1o  ≠  ∅ ) | 
						
							| 159 | 156 158 | mpbir | ⊢ ∅  ≺  1o | 
						
							| 160 |  | id | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ℵ ‘ 𝐴 )  =  ∅ ) | 
						
							| 161 |  | fveq2 | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ( cf ‘ ∅ ) ) | 
						
							| 162 |  | cf0 | ⊢ ( cf ‘ ∅ )  =  ∅ | 
						
							| 163 | 161 162 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( cf ‘ ( ℵ ‘ 𝐴 ) )  =  ∅ ) | 
						
							| 164 | 160 163 | oveq12d | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  =  ( ∅  ↑m  ∅ ) ) | 
						
							| 165 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 166 |  | map0e | ⊢ ( ∅  ∈  V  →  ( ∅  ↑m  ∅ )  =  1o ) | 
						
							| 167 | 165 166 | ax-mp | ⊢ ( ∅  ↑m  ∅ )  =  1o | 
						
							| 168 | 164 167 | eqtrdi | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  =  1o ) | 
						
							| 169 | 160 168 | breq12d | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) )  ↔  ∅  ≺  1o ) ) | 
						
							| 170 | 159 169 | mpbiri | ⊢ ( ( ℵ ‘ 𝐴 )  =  ∅  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 171 | 155 170 | syl | ⊢ ( ¬  𝐴  ∈  dom  ℵ  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 172 | 154 171 | sylnbir | ⊢ ( ¬  𝐴  ∈  On  →  ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) ) | 
						
							| 173 | 151 172 | pm2.61i | ⊢ ( ℵ ‘ 𝐴 )  ≺  ( ( ℵ ‘ 𝐴 )  ↑m  ( cf ‘ ( ℵ ‘ 𝐴 ) ) ) |