| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 2 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 3 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 4 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 5 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 ..^ 𝑁 ) ∈ Fin ) |
| 6 |
2
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 7 |
|
elfzonn0 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 9 |
6 8
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 10 |
3
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ∈ ℂ ) |
| 11 |
|
ubmelm1fzo |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 12 |
|
elfzonn0 |
⊢ ( ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ℕ0 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ℕ0 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ℕ0 ) |
| 15 |
10 14
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ∈ ℂ ) |
| 16 |
9 15
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ∈ ℂ ) |
| 17 |
5 16
|
fsumcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ∈ ℂ ) |
| 18 |
2 3 17
|
subdird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = ( ( 𝐴 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) − ( 𝐵 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) ) |
| 19 |
5 2 16
|
fsummulc2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) |
| 20 |
6 9 15
|
mulassd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 · ( 𝐴 ↑ 𝑘 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = ( 𝐴 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) |
| 21 |
6 9
|
mulcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 · ( 𝐴 ↑ 𝑘 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 22 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 23 |
2 7 22
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 24 |
21 23
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 · ( 𝐴 ↑ 𝑘 ) ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 · ( 𝐴 ↑ 𝑘 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 26 |
20 25
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 27 |
26
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 28 |
19 27
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 29 |
5 3 16
|
fsummulc2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐵 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) |
| 30 |
10 16
|
mulcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) · 𝐵 ) ) |
| 31 |
9 15 10
|
mulassd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) · 𝐵 ) = ( ( 𝐴 ↑ 𝑘 ) · ( ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) · 𝐵 ) ) ) |
| 32 |
|
expp1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ℕ0 ) → ( 𝐵 ↑ ( ( ( 𝑁 − 𝑘 ) − 1 ) + 1 ) ) = ( ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) · 𝐵 ) ) |
| 33 |
32
|
eqcomd |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ℕ0 ) → ( ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) · 𝐵 ) = ( 𝐵 ↑ ( ( ( 𝑁 − 𝑘 ) − 1 ) + 1 ) ) ) |
| 34 |
3 13 33
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) · 𝐵 ) = ( 𝐵 ↑ ( ( ( 𝑁 − 𝑘 ) − 1 ) + 1 ) ) ) |
| 35 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝑁 ∈ ℂ ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 38 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ℤ ) |
| 39 |
38
|
zcnd |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ℂ ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 41 |
37 40
|
subcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ℂ ) |
| 42 |
|
npcan1 |
⊢ ( ( 𝑁 − 𝑘 ) ∈ ℂ → ( ( ( 𝑁 − 𝑘 ) − 1 ) + 1 ) = ( 𝑁 − 𝑘 ) ) |
| 43 |
42
|
oveq2d |
⊢ ( ( 𝑁 − 𝑘 ) ∈ ℂ → ( 𝐵 ↑ ( ( ( 𝑁 − 𝑘 ) − 1 ) + 1 ) ) = ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) |
| 44 |
41 43
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 ↑ ( ( ( 𝑁 − 𝑘 ) − 1 ) + 1 ) ) = ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) |
| 45 |
34 44
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) · 𝐵 ) = ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) · 𝐵 ) ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 47 |
30 31 46
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 48 |
47
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐵 · ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 49 |
29 48
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 50 |
28 49
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) − ( 𝐵 · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) − Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) |
| 51 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝑁 ∈ ℤ ) |
| 53 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 55 |
54
|
sumeq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 56 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 57 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 58 |
56 57
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 59 |
58
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 60 |
2
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 61 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 62 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 63 |
61 62
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 65 |
60 64
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 66 |
3
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 67 |
36
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℂ ) |
| 68 |
61
|
nn0cnd |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℂ ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 70 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ℂ ) |
| 71 |
67 69 70
|
sub32d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( ( 𝑁 − 1 ) − 𝑘 ) ) |
| 72 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) − 𝑘 ) ∈ ℕ0 ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) − 𝑘 ) ∈ ℕ0 ) |
| 74 |
71 73
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 𝑘 ) − 1 ) ∈ ℕ0 ) |
| 75 |
66 74
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ∈ ℂ ) |
| 76 |
65 75
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ∈ ℂ ) |
| 77 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑁 − 1 ) → ( 𝑘 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
| 78 |
77
|
oveq2d |
⊢ ( 𝑘 = ( 𝑁 − 1 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 79 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑁 − 1 ) → ( 𝑁 − 𝑘 ) = ( 𝑁 − ( 𝑁 − 1 ) ) ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝑘 = ( 𝑁 − 1 ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) |
| 81 |
80
|
oveq2d |
⊢ ( 𝑘 = ( 𝑁 − 1 ) → ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) = ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) |
| 82 |
78 81
|
oveq12d |
⊢ ( 𝑘 = ( 𝑁 − 1 ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) |
| 83 |
59 76 82
|
fsumm1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) + ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) ) |
| 84 |
55 83
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) + ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) ) |
| 85 |
54
|
sumeq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 86 |
61
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 87 |
60 86
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 88 |
54
|
eleq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 89 |
|
fzonnsub |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ ) |
| 90 |
89
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 91 |
88 90
|
biimtrrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) ) |
| 92 |
91
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 93 |
66 92
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℂ ) |
| 94 |
87 93
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ∈ ℂ ) |
| 95 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 0 ) ) |
| 96 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑁 − 𝑘 ) = ( 𝑁 − 0 ) ) |
| 97 |
96
|
oveq2d |
⊢ ( 𝑘 = 0 → ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) = ( 𝐵 ↑ ( 𝑁 − 0 ) ) ) |
| 98 |
95 97
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ ( 𝑁 − 0 ) ) ) ) |
| 99 |
59 94 98
|
fsum1p |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = ( ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ ( 𝑁 − 0 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) |
| 100 |
2
|
exp0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 0 ) = 1 ) |
| 101 |
36
|
subid1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑁 − 0 ) = 𝑁 ) |
| 102 |
101
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ ( 𝑁 − 0 ) ) = ( 𝐵 ↑ 𝑁 ) ) |
| 103 |
100 102
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ ( 𝑁 − 0 ) ) ) = ( 1 · ( 𝐵 ↑ 𝑁 ) ) ) |
| 104 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝑁 ∈ ℕ ) |
| 105 |
104
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 106 |
3 105
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 107 |
106
|
mullidd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( 𝐵 ↑ 𝑁 ) ) = ( 𝐵 ↑ 𝑁 ) ) |
| 108 |
103 107
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ ( 𝑁 − 0 ) ) ) = ( 𝐵 ↑ 𝑁 ) ) |
| 109 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 110 |
109
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 + 1 ) = 1 ) |
| 111 |
110
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 112 |
111
|
sumeq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 113 |
108 112
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ ( 𝑁 − 0 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) = ( ( 𝐵 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) |
| 114 |
85 99 113
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = ( ( 𝐵 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) |
| 115 |
84 114
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) − Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) = ( ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) + ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) − ( ( 𝐵 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) ) |
| 116 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
| 117 |
2
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 118 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ ) |
| 119 |
118
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 120 |
119
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 121 |
117 120
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 122 |
3
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 123 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 124 |
52 123
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 125 |
124
|
eleq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ ( 1 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 126 |
|
fzonnsub |
⊢ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ ) |
| 127 |
126
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 1 ..^ 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 128 |
125 127
|
biimtrrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) ) |
| 129 |
128
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
| 130 |
122 129
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℂ ) |
| 131 |
121 130
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ∈ ℂ ) |
| 132 |
116 131
|
fsumcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ∈ ℂ ) |
| 133 |
2 105
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 134 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 + 1 ) = ( 𝑙 + 1 ) ) |
| 135 |
134
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( 𝐴 ↑ ( 𝑙 + 1 ) ) ) |
| 136 |
|
oveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑁 − 𝑘 ) = ( 𝑁 − 𝑙 ) ) |
| 137 |
136
|
oveq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑁 − 𝑘 ) − 1 ) = ( ( 𝑁 − 𝑙 ) − 1 ) ) |
| 138 |
137
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) = ( 𝐵 ↑ ( ( 𝑁 − 𝑙 ) − 1 ) ) ) |
| 139 |
135 138
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑙 ) − 1 ) ) ) ) |
| 140 |
139
|
cbvsumv |
⊢ Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = Σ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑙 ) − 1 ) ) ) |
| 141 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 142 |
141
|
eqcomi |
⊢ 0 = ( 1 − 1 ) |
| 143 |
142
|
oveq1i |
⊢ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) = ( ( 1 − 1 ) ... ( ( 𝑁 − 1 ) − 1 ) ) |
| 144 |
143
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) = ( ( 1 − 1 ) ... ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 145 |
36
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) → 𝑁 ∈ ℂ ) |
| 146 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) → 𝑙 ∈ ℕ0 ) |
| 147 |
146
|
nn0cnd |
⊢ ( 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) → 𝑙 ∈ ℂ ) |
| 148 |
147
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) → 𝑙 ∈ ℂ ) |
| 149 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) → 1 ∈ ℂ ) |
| 150 |
145 148 149
|
subsub4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) → ( ( 𝑁 − 𝑙 ) − 1 ) = ( 𝑁 − ( 𝑙 + 1 ) ) ) |
| 151 |
150
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) → ( 𝐵 ↑ ( ( 𝑁 − 𝑙 ) − 1 ) ) = ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) |
| 152 |
151
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) → ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑙 ) − 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) ) |
| 153 |
144 152
|
sumeq12dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑙 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑙 ) − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 − 1 ) ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) ) |
| 154 |
140 153
|
eqtrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = Σ 𝑙 ∈ ( ( 1 − 1 ) ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) ) |
| 155 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 1 ∈ ℤ ) |
| 156 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
| 157 |
52 156
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 158 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ ( 𝑙 + 1 ) ) ) |
| 159 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( 𝑁 − 𝑘 ) = ( 𝑁 − ( 𝑙 + 1 ) ) ) |
| 160 |
159
|
oveq2d |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) = ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) |
| 161 |
158 160
|
oveq12d |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) ) |
| 162 |
155 155 157 131 161
|
fsumshftm |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) = Σ 𝑙 ∈ ( ( 1 − 1 ) ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑙 + 1 ) ) · ( 𝐵 ↑ ( 𝑁 − ( 𝑙 + 1 ) ) ) ) ) |
| 163 |
154 162
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
| 164 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 165 |
36 164
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 166 |
165
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 167 |
|
peano2cnm |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 − 1 ) ∈ ℂ ) |
| 168 |
35 167
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℂ ) |
| 169 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 170 |
35 168 169
|
sub32d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) = ( ( 𝑁 − 1 ) − ( 𝑁 − 1 ) ) ) |
| 171 |
168
|
subidd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) − ( 𝑁 − 1 ) ) = 0 ) |
| 172 |
170 171
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) = 0 ) |
| 173 |
172
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) = 0 ) |
| 174 |
173
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) = ( 𝐵 ↑ 0 ) ) |
| 175 |
|
exp0 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) |
| 176 |
175
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 0 ) = 1 ) |
| 177 |
174 176
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) = 1 ) |
| 178 |
166 177
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) · 1 ) ) |
| 179 |
133
|
mulridd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 𝑁 ) · 1 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 180 |
178 179
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 181 |
163 180
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) + ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) + ( 𝐴 ↑ 𝑁 ) ) ) |
| 182 |
132 133 181
|
comraddd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) + ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) = ( ( 𝐴 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) |
| 183 |
182
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) + ( ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − ( 𝑁 − 1 ) ) − 1 ) ) ) ) − ( ( 𝐵 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) = ( ( ( 𝐴 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) − ( ( 𝐵 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) ) |
| 184 |
133 106 132
|
pnpcan2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) − ( ( 𝐵 ↑ 𝑁 ) + Σ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) ) = ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) ) |
| 185 |
115 183 184
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) − Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( 𝑁 − 𝑘 ) ) ) ) = ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) ) |
| 186 |
18 50 185
|
3eqtrrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) |
| 187 |
186
|
3exp |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) ) ) |
| 188 |
|
simp2 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 189 |
|
simp3 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 190 |
188 189
|
subcld |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 191 |
190
|
mul01d |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) · 0 ) = 0 ) |
| 192 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 0 ..^ 𝑁 ) = ( 0 ..^ 0 ) ) |
| 193 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 194 |
192 193
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 0 ..^ 𝑁 ) = ∅ ) |
| 195 |
194
|
sumeq1d |
⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = Σ 𝑘 ∈ ∅ ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 196 |
195
|
3ad2ant1 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = Σ 𝑘 ∈ ∅ ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) |
| 197 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = 0 |
| 198 |
196 197
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) = 0 ) |
| 199 |
198
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) = ( ( 𝐴 − 𝐵 ) · 0 ) ) |
| 200 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
| 201 |
200
|
3ad2ant1 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ 0 ) ) |
| 202 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
| 203 |
202
|
3ad2ant2 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 0 ) = 1 ) |
| 204 |
201 203
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 𝑁 ) = 1 ) |
| 205 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐵 ↑ 𝑁 ) = ( 𝐵 ↑ 0 ) ) |
| 206 |
205
|
3ad2ant1 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 𝑁 ) = ( 𝐵 ↑ 0 ) ) |
| 207 |
175
|
3ad2ant3 |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 0 ) = 1 ) |
| 208 |
206 207
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 𝑁 ) = 1 ) |
| 209 |
204 208
|
oveq12d |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( 1 − 1 ) ) |
| 210 |
209 141
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = 0 ) |
| 211 |
191 199 210
|
3eqtr4rd |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) |
| 212 |
211
|
3exp |
⊢ ( 𝑁 = 0 → ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) ) ) |
| 213 |
187 212
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) ) ) |
| 214 |
1 213
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) ) ) |
| 215 |
214
|
3imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 𝑁 ) − ( 𝐵 ↑ 𝑁 ) ) = ( ( 𝐴 − 𝐵 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) ) ) |