| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 2 |  | pwdjuen | ⊢ ( ( 𝐴  ∈  𝑉  ∧  1o  ∈  On )  →  𝒫  ( 𝐴  ⊔  1o )  ≈  ( 𝒫  𝐴  ×  𝒫  1o ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  ( 𝐴  ⊔  1o )  ≈  ( 𝒫  𝐴  ×  𝒫  1o ) ) | 
						
							| 4 |  | pwexg | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  𝐴  ∈  V ) | 
						
							| 5 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 6 | 5 | pwex | ⊢ 𝒫  1o  ∈  V | 
						
							| 7 |  | xpcomeng | ⊢ ( ( 𝒫  𝐴  ∈  V  ∧  𝒫  1o  ∈  V )  →  ( 𝒫  𝐴  ×  𝒫  1o )  ≈  ( 𝒫  1o  ×  𝒫  𝐴 ) ) | 
						
							| 8 | 4 6 7 | sylancl | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝒫  𝐴  ×  𝒫  1o )  ≈  ( 𝒫  1o  ×  𝒫  𝐴 ) ) | 
						
							| 9 |  | entr | ⊢ ( ( 𝒫  ( 𝐴  ⊔  1o )  ≈  ( 𝒫  𝐴  ×  𝒫  1o )  ∧  ( 𝒫  𝐴  ×  𝒫  1o )  ≈  ( 𝒫  1o  ×  𝒫  𝐴 ) )  →  𝒫  ( 𝐴  ⊔  1o )  ≈  ( 𝒫  1o  ×  𝒫  𝐴 ) ) | 
						
							| 10 | 3 8 9 | syl2anc | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  ( 𝐴  ⊔  1o )  ≈  ( 𝒫  1o  ×  𝒫  𝐴 ) ) | 
						
							| 11 |  | pwpw0 | ⊢ 𝒫  { ∅ }  =  { ∅ ,  { ∅ } } | 
						
							| 12 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 13 | 12 | pweqi | ⊢ 𝒫  1o  =  𝒫  { ∅ } | 
						
							| 14 |  | df2o2 | ⊢ 2o  =  { ∅ ,  { ∅ } } | 
						
							| 15 | 11 13 14 | 3eqtr4i | ⊢ 𝒫  1o  =  2o | 
						
							| 16 | 15 | xpeq1i | ⊢ ( 𝒫  1o  ×  𝒫  𝐴 )  =  ( 2o  ×  𝒫  𝐴 ) | 
						
							| 17 |  | xp2dju | ⊢ ( 2o  ×  𝒫  𝐴 )  =  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) | 
						
							| 18 | 16 17 | eqtri | ⊢ ( 𝒫  1o  ×  𝒫  𝐴 )  =  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) | 
						
							| 19 | 10 18 | breqtrdi | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  ( 𝐴  ⊔  1o )  ≈  ( 𝒫  𝐴  ⊔  𝒫  𝐴 ) ) | 
						
							| 20 | 19 | ensymd | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝒫  𝐴  ⊔  𝒫  𝐴 )  ≈  𝒫  ( 𝐴  ⊔  1o ) ) |