Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
⊢ 1o ∈ On |
2 |
|
pwdjuen |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ On ) → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 × 𝒫 1o ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 × 𝒫 1o ) ) |
4 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
5 |
|
1oex |
⊢ 1o ∈ V |
6 |
5
|
pwex |
⊢ 𝒫 1o ∈ V |
7 |
|
xpcomeng |
⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝒫 1o ∈ V ) → ( 𝒫 𝐴 × 𝒫 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) |
8 |
4 6 7
|
sylancl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 × 𝒫 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) |
9 |
|
entr |
⊢ ( ( 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 × 𝒫 1o ) ∧ ( 𝒫 𝐴 × 𝒫 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) |
10 |
3 8 9
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 1o × 𝒫 𝐴 ) ) |
11 |
|
pwpw0 |
⊢ 𝒫 { ∅ } = { ∅ , { ∅ } } |
12 |
|
df1o2 |
⊢ 1o = { ∅ } |
13 |
12
|
pweqi |
⊢ 𝒫 1o = 𝒫 { ∅ } |
14 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
15 |
11 13 14
|
3eqtr4i |
⊢ 𝒫 1o = 2o |
16 |
15
|
xpeq1i |
⊢ ( 𝒫 1o × 𝒫 𝐴 ) = ( 2o × 𝒫 𝐴 ) |
17 |
|
xp2dju |
⊢ ( 2o × 𝒫 𝐴 ) = ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) |
18 |
16 17
|
eqtri |
⊢ ( 𝒫 1o × 𝒫 𝐴 ) = ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) |
19 |
10 18
|
breqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ) |
20 |
19
|
ensymd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |