Step |
Hyp |
Ref |
Expression |
1 |
|
canthwdom |
⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
2 |
|
0ex |
⊢ ∅ ∈ V |
3 |
|
reldom |
⊢ Rel ≼ |
4 |
3
|
brrelex2i |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
5 |
|
djuexb |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
6 |
4 5
|
sylibr |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
7 |
6
|
simpld |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝐴 ∈ V ) |
8 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
9 |
2 7 8
|
sylancr |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
10 |
|
endom |
⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → ( { ∅ } × 𝐴 ) ≼ 𝐴 ) |
11 |
|
domwdom |
⊢ ( ( { ∅ } × 𝐴 ) ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≼* 𝐴 ) |
12 |
|
wdomtr |
⊢ ( ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ∧ ( { ∅ } × 𝐴 ) ≼* 𝐴 ) → 𝒫 𝐴 ≼* 𝐴 ) |
13 |
12
|
expcom |
⊢ ( ( { ∅ } × 𝐴 ) ≼* 𝐴 → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) → 𝒫 𝐴 ≼* 𝐴 ) ) |
14 |
9 10 11 13
|
4syl |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) → 𝒫 𝐴 ≼* 𝐴 ) ) |
15 |
1 14
|
mtoi |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ¬ 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ) |
16 |
|
pwdjuen |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
17 |
7 7 16
|
syl2anc |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) ) |
18 |
|
domen1 |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐴 ) → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ↔ ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) ) |
19 |
17 18
|
syl |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ↔ ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) ) |
20 |
19
|
ibi |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
21 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
22 |
20 21
|
breqtrdi |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
23 |
|
unxpwdom |
⊢ ( ( 𝒫 𝐴 × 𝒫 𝐴 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ∨ 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) ) |
24 |
22 23
|
syl |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) ∨ 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) ) |
25 |
24
|
ord |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( ¬ 𝒫 𝐴 ≼* ( { ∅ } × 𝐴 ) → 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) ) |
26 |
15 25
|
mpd |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ) |
27 |
|
1on |
⊢ 1o ∈ On |
28 |
6
|
simprd |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝐵 ∈ V ) |
29 |
|
xpsnen2g |
⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ V ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
30 |
27 28 29
|
sylancr |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
31 |
|
domentr |
⊢ ( ( 𝒫 𝐴 ≼ ( { 1o } × 𝐵 ) ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |
32 |
26 30 31
|
syl2anc |
⊢ ( 𝒫 ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 ⊔ 𝐵 ) → 𝒫 𝐴 ≼ 𝐵 ) |