| Step | Hyp | Ref | Expression | 
						
							| 1 |  | canthwdom | ⊢ ¬  𝒫  𝐴  ≼*  𝐴 | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 |  | reldom | ⊢ Rel   ≼ | 
						
							| 4 | 3 | brrelex2i | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝐴  ⊔  𝐵 )  ∈  V ) | 
						
							| 5 |  | djuexb | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  ↔  ( 𝐴  ⊔  𝐵 )  ∈  V ) | 
						
							| 6 | 4 5 | sylibr | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  𝐴  ∈  V ) | 
						
							| 8 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐴  ∈  V )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 9 | 2 7 8 | sylancr | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 10 |  | endom | ⊢ ( ( { ∅ }  ×  𝐴 )  ≈  𝐴  →  ( { ∅ }  ×  𝐴 )  ≼  𝐴 ) | 
						
							| 11 |  | domwdom | ⊢ ( ( { ∅ }  ×  𝐴 )  ≼  𝐴  →  ( { ∅ }  ×  𝐴 )  ≼*  𝐴 ) | 
						
							| 12 |  | wdomtr | ⊢ ( ( 𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 )  ∧  ( { ∅ }  ×  𝐴 )  ≼*  𝐴 )  →  𝒫  𝐴  ≼*  𝐴 ) | 
						
							| 13 | 12 | expcom | ⊢ ( ( { ∅ }  ×  𝐴 )  ≼*  𝐴  →  ( 𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 )  →  𝒫  𝐴  ≼*  𝐴 ) ) | 
						
							| 14 | 9 10 11 13 | 4syl | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 )  →  𝒫  𝐴  ≼*  𝐴 ) ) | 
						
							| 15 | 1 14 | mtoi | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ¬  𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 16 |  | pwdjuen | ⊢ ( ( 𝐴  ∈  V  ∧  𝐴  ∈  V )  →  𝒫  ( 𝐴  ⊔  𝐴 )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐴 ) ) | 
						
							| 17 | 7 7 16 | syl2anc | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  𝒫  ( 𝐴  ⊔  𝐴 )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐴 ) ) | 
						
							| 18 |  | domen1 | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐴 )  →  ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  ↔  ( 𝒫  𝐴  ×  𝒫  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  ↔  ( 𝒫  𝐴  ×  𝒫  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 20 | 19 | ibi | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝒫  𝐴  ×  𝒫  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 21 |  | df-dju | ⊢ ( 𝐴  ⊔  𝐵 )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) | 
						
							| 22 | 20 21 | breqtrdi | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝒫  𝐴  ×  𝒫  𝐴 )  ≼  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 23 |  | unxpwdom | ⊢ ( ( 𝒫  𝐴  ×  𝒫  𝐴 )  ≼  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  𝐵 ) )  →  ( 𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 )  ∨  𝒫  𝐴  ≼  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( 𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 )  ∨  𝒫  𝐴  ≼  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 25 | 24 | ord | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( ¬  𝒫  𝐴  ≼*  ( { ∅ }  ×  𝐴 )  →  𝒫  𝐴  ≼  ( { 1o }  ×  𝐵 ) ) ) | 
						
							| 26 | 15 25 | mpd | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  𝒫  𝐴  ≼  ( { 1o }  ×  𝐵 ) ) | 
						
							| 27 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 28 | 6 | simprd | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 29 |  | xpsnen2g | ⊢ ( ( 1o  ∈  On  ∧  𝐵  ∈  V )  →  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 30 | 27 28 29 | sylancr | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  ( { 1o }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 31 |  | domentr | ⊢ ( ( 𝒫  𝐴  ≼  ( { 1o }  ×  𝐵 )  ∧  ( { 1o }  ×  𝐵 )  ≈  𝐵 )  →  𝒫  𝐴  ≼  𝐵 ) | 
						
							| 32 | 26 30 31 | syl2anc | ⊢ ( 𝒫  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  𝐵 )  →  𝒫  𝐴  ≼  𝐵 ) |