Step |
Hyp |
Ref |
Expression |
1 |
|
djuex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
2 |
|
pw2eng |
⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ) |
4 |
|
2on |
⊢ 2o ∈ On |
5 |
|
mapdjuen |
⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
6 |
4 5
|
mp3an1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
7 |
|
pw2eng |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
8 |
|
pw2eng |
⊢ ( 𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
9 |
|
xpen |
⊢ ( ( 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ∧ 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) |
11 |
|
enen2 |
⊢ ( ( 𝒫 𝐴 × 𝒫 𝐵 ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) → ( ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ↔ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( ( 2o ↑m 𝐴 ) × ( 2o ↑m 𝐵 ) ) ) ) |
13 |
6 12
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |
14 |
|
entr |
⊢ ( ( 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ∧ ( 2o ↑m ( 𝐴 ⊔ 𝐵 ) ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |
15 |
3 13 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝒫 𝐴 × 𝒫 𝐵 ) ) |