| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djuex | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ⊔  𝐵 )  ∈  V ) | 
						
							| 2 |  | pw2eng | ⊢ ( ( 𝐴  ⊔  𝐵 )  ∈  V  →  𝒫  ( 𝐴  ⊔  𝐵 )  ≈  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝒫  ( 𝐴  ⊔  𝐵 )  ≈  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) ) ) | 
						
							| 4 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 5 |  | mapdjuen | ⊢ ( ( 2o  ∈  On  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) ) ) | 
						
							| 6 | 4 5 | mp3an1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) ) ) | 
						
							| 7 |  | pw2eng | ⊢ ( 𝐴  ∈  𝑉  →  𝒫  𝐴  ≈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 8 |  | pw2eng | ⊢ ( 𝐵  ∈  𝑊  →  𝒫  𝐵  ≈  ( 2o  ↑m  𝐵 ) ) | 
						
							| 9 |  | xpen | ⊢ ( ( 𝒫  𝐴  ≈  ( 2o  ↑m  𝐴 )  ∧  𝒫  𝐵  ≈  ( 2o  ↑m  𝐵 ) )  →  ( 𝒫  𝐴  ×  𝒫  𝐵 )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝒫  𝐴  ×  𝒫  𝐵 )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) ) ) | 
						
							| 11 |  | enen2 | ⊢ ( ( 𝒫  𝐴  ×  𝒫  𝐵 )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) )  →  ( ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐵 )  ↔  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐵 )  ↔  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( ( 2o  ↑m  𝐴 )  ×  ( 2o  ↑m  𝐵 ) ) ) ) | 
						
							| 13 | 6 12 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐵 ) ) | 
						
							| 14 |  | entr | ⊢ ( ( 𝒫  ( 𝐴  ⊔  𝐵 )  ≈  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ∧  ( 2o  ↑m  ( 𝐴  ⊔  𝐵 ) )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐵 ) )  →  𝒫  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐵 ) ) | 
						
							| 15 | 3 13 14 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝒫  ( 𝐴  ⊔  𝐵 )  ≈  ( 𝒫  𝐴  ×  𝒫  𝐵 ) ) |