Metamath Proof Explorer


Theorem pwdjuidm

Description: If the natural numbers inject into A , then ~P A is idempotent under cardinal sum. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdjuidm ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
3 pwdju1 ( 𝐴 ∈ V → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) )
4 2 3 syl ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) )
5 infdju1 ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 )
6 pwen ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 )
7 5 6 syl ( ω ≼ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 )
8 entr ( ( ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 )
9 4 7 8 syl2anc ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 )