Description: If the natural numbers inject into A , then ~P A is idempotent under cardinal sum. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pwdjuidm | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom | ⊢ Rel ≼ | |
2 | 1 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
3 | pwdju1 | ⊢ ( 𝐴 ∈ V → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) | |
4 | 2 3 | syl | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) |
5 | infdju1 | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
6 | pwen | ⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) | |
7 | 5 6 | syl | ⊢ ( ω ≼ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
8 | entr | ⊢ ( ( ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
9 | 4 7 8 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |