Description: If the natural numbers inject into A , then ~P A is idempotent under cardinal sum. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdjuidm | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) | 
| 3 | pwdju1 | ⊢ ( 𝐴 ∈ V → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) | |
| 4 | 2 3 | syl | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ) | 
| 5 | infdju1 | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
| 6 | pwen | ⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( ω ≼ 𝐴 → 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) | 
| 8 | entr | ⊢ ( ( ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 ( 𝐴 ⊔ 1o ) ∧ 𝒫 ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 9 | 4 7 8 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ⊔ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |