| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwxpndom2 | ⊢ ( ω  ≼  𝐴  →  ¬  𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 2 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 3 | 2 | xpeq1i | ⊢ ( 1o  ×  𝐴 )  =  ( { ∅ }  ×  𝐴 ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 |  | reldom | ⊢ Rel   ≼ | 
						
							| 6 | 5 | brrelex2i | ⊢ ( ω  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 7 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐴  ∈  V )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 8 | 4 6 7 | sylancr | ⊢ ( ω  ≼  𝐴  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 9 | 3 8 | eqbrtrid | ⊢ ( ω  ≼  𝐴  →  ( 1o  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 10 | 9 | ensymd | ⊢ ( ω  ≼  𝐴  →  𝐴  ≈  ( 1o  ×  𝐴 ) ) | 
						
							| 11 |  | omex | ⊢ ω  ∈  V | 
						
							| 12 |  | ordom | ⊢ Ord  ω | 
						
							| 13 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 14 |  | ordelss | ⊢ ( ( Ord  ω  ∧  1o  ∈  ω )  →  1o  ⊆  ω ) | 
						
							| 15 | 12 13 14 | mp2an | ⊢ 1o  ⊆  ω | 
						
							| 16 |  | ssdomg | ⊢ ( ω  ∈  V  →  ( 1o  ⊆  ω  →  1o  ≼  ω ) ) | 
						
							| 17 | 11 15 16 | mp2 | ⊢ 1o  ≼  ω | 
						
							| 18 |  | domtr | ⊢ ( ( 1o  ≼  ω  ∧  ω  ≼  𝐴 )  →  1o  ≼  𝐴 ) | 
						
							| 19 | 17 18 | mpan | ⊢ ( ω  ≼  𝐴  →  1o  ≼  𝐴 ) | 
						
							| 20 |  | xpdom1g | ⊢ ( ( 𝐴  ∈  V  ∧  1o  ≼  𝐴 )  →  ( 1o  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 21 | 6 19 20 | syl2anc | ⊢ ( ω  ≼  𝐴  →  ( 1o  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 22 |  | endomtr | ⊢ ( ( 𝐴  ≈  ( 1o  ×  𝐴 )  ∧  ( 1o  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) )  →  𝐴  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 23 | 10 21 22 | syl2anc | ⊢ ( ω  ≼  𝐴  →  𝐴  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 24 |  | djudom2 | ⊢ ( ( 𝐴  ≼  ( 𝐴  ×  𝐴 )  ∧  𝐴  ∈  V )  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 25 | 23 6 24 | syl2anc | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 26 |  | domtr | ⊢ ( ( 𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 )  ∧  ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) )  →  𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 27 | 26 | expcom | ⊢ ( ( 𝐴  ⊔  𝐴 )  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  →  ( 𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 )  →  𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 28 | 25 27 | syl | ⊢ ( ω  ≼  𝐴  →  ( 𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 )  →  𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) ) | 
						
							| 29 | 1 28 | mtod | ⊢ ( ω  ≼  𝐴  →  ¬  𝒫  𝐴  ≼  ( 𝐴  ⊔  𝐴 ) ) |