| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relen | ⊢ Rel   ≈ | 
						
							| 2 | 1 | brrelex1i | ⊢ ( 𝐴  ≈  𝐵  →  𝐴  ∈  V ) | 
						
							| 3 |  | pw2eng | ⊢ ( 𝐴  ∈  V  →  𝒫  𝐴  ≈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  ≈  𝐵  →  𝒫  𝐴  ≈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 5 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 6 | 5 | elexi | ⊢ 2o  ∈  V | 
						
							| 7 | 6 | enref | ⊢ 2o  ≈  2o | 
						
							| 8 |  | mapen | ⊢ ( ( 2o  ≈  2o  ∧  𝐴  ≈  𝐵 )  →  ( 2o  ↑m  𝐴 )  ≈  ( 2o  ↑m  𝐵 ) ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝐴  ≈  𝐵  →  ( 2o  ↑m  𝐴 )  ≈  ( 2o  ↑m  𝐵 ) ) | 
						
							| 10 | 1 | brrelex2i | ⊢ ( 𝐴  ≈  𝐵  →  𝐵  ∈  V ) | 
						
							| 11 |  | pw2eng | ⊢ ( 𝐵  ∈  V  →  𝒫  𝐵  ≈  ( 2o  ↑m  𝐵 ) ) | 
						
							| 12 |  | ensym | ⊢ ( 𝒫  𝐵  ≈  ( 2o  ↑m  𝐵 )  →  ( 2o  ↑m  𝐵 )  ≈  𝒫  𝐵 ) | 
						
							| 13 | 10 11 12 | 3syl | ⊢ ( 𝐴  ≈  𝐵  →  ( 2o  ↑m  𝐵 )  ≈  𝒫  𝐵 ) | 
						
							| 14 |  | entr | ⊢ ( ( ( 2o  ↑m  𝐴 )  ≈  ( 2o  ↑m  𝐵 )  ∧  ( 2o  ↑m  𝐵 )  ≈  𝒫  𝐵 )  →  ( 2o  ↑m  𝐴 )  ≈  𝒫  𝐵 ) | 
						
							| 15 | 9 13 14 | syl2anc | ⊢ ( 𝐴  ≈  𝐵  →  ( 2o  ↑m  𝐴 )  ≈  𝒫  𝐵 ) | 
						
							| 16 |  | entr | ⊢ ( ( 𝒫  𝐴  ≈  ( 2o  ↑m  𝐴 )  ∧  ( 2o  ↑m  𝐴 )  ≈  𝒫  𝐵 )  →  𝒫  𝐴  ≈  𝒫  𝐵 ) | 
						
							| 17 | 4 15 16 | syl2anc | ⊢ ( 𝐴  ≈  𝐵  →  𝒫  𝐴  ≈  𝒫  𝐵 ) |