Step |
Hyp |
Ref |
Expression |
1 |
|
relen |
⊢ Rel ≈ |
2 |
1
|
brrelex1i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
3 |
|
pw2eng |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ) |
5 |
|
2onn |
⊢ 2o ∈ ω |
6 |
5
|
elexi |
⊢ 2o ∈ V |
7 |
6
|
enref |
⊢ 2o ≈ 2o |
8 |
|
mapen |
⊢ ( ( 2o ≈ 2o ∧ 𝐴 ≈ 𝐵 ) → ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ) |
9 |
7 8
|
mpan |
⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ) |
10 |
1
|
brrelex2i |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
11 |
|
pw2eng |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) ) |
12 |
|
ensym |
⊢ ( 𝒫 𝐵 ≈ ( 2o ↑m 𝐵 ) → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
13 |
10 11 12
|
3syl |
⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) |
14 |
|
entr |
⊢ ( ( ( 2o ↑m 𝐴 ) ≈ ( 2o ↑m 𝐵 ) ∧ ( 2o ↑m 𝐵 ) ≈ 𝒫 𝐵 ) → ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) |
15 |
9 13 14
|
syl2anc |
⊢ ( 𝐴 ≈ 𝐵 → ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) |
16 |
|
entr |
⊢ ( ( 𝒫 𝐴 ≈ ( 2o ↑m 𝐴 ) ∧ ( 2o ↑m 𝐴 ) ≈ 𝒫 𝐵 ) → 𝒫 𝐴 ≈ 𝒫 𝐵 ) |
17 |
4 15 16
|
syl2anc |
⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵 ) |