Metamath Proof Explorer


Theorem pwexd

Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis pwexd.1 ( 𝜑𝐴𝑉 )
Assertion pwexd ( 𝜑 → 𝒫 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 pwexd.1 ( 𝜑𝐴𝑉 )
2 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
3 1 2 syl ( 𝜑 → 𝒫 𝐴 ∈ V )