Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow . (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | pwexr | ⊢ ( 𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | uniexg | ⊢ ( 𝒫 𝐴 ∈ 𝑉 → ∪ 𝒫 𝐴 ∈ V ) | |
3 | 1 2 | eqeltrrid | ⊢ ( 𝒫 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |