Step |
Hyp |
Ref |
Expression |
1 |
|
pweq |
⊢ ( 𝑥 = ∅ → 𝒫 𝑥 = 𝒫 ∅ ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 ∅ ∈ Fin ) ) |
3 |
|
pweq |
⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) ) |
5 |
|
pweq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝒫 𝑥 = 𝒫 ( 𝑦 ∪ { 𝑧 } ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
7 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) ) |
9 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
10 |
|
snfi |
⊢ { ∅ } ∈ Fin |
11 |
9 10
|
eqeltri |
⊢ 𝒫 ∅ ∈ Fin |
12 |
|
eqid |
⊢ ( 𝑐 ∈ 𝒫 𝑦 ↦ ( 𝑐 ∪ { 𝑧 } ) ) = ( 𝑐 ∈ 𝒫 𝑦 ↦ ( 𝑐 ∪ { 𝑧 } ) ) |
13 |
12
|
pwfilem |
⊢ ( 𝒫 𝑦 ∈ Fin → 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
14 |
13
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( 𝒫 𝑦 ∈ Fin → 𝒫 ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
15 |
2 4 6 8 11 14
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin ) |
16 |
|
pwfir |
⊢ ( 𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin ) |
17 |
15 16
|
impbii |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |