| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pweq | ⊢ ( 𝑥  =  ∅  →  𝒫  𝑥  =  𝒫  ∅ ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑥  =  ∅  →  ( 𝒫  𝑥  ∈  Fin  ↔  𝒫  ∅  ∈  Fin ) ) | 
						
							| 3 |  | pweq | ⊢ ( 𝑥  =  𝑦  →  𝒫  𝑥  =  𝒫  𝑦 ) | 
						
							| 4 | 3 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝒫  𝑥  ∈  Fin  ↔  𝒫  𝑦  ∈  Fin ) ) | 
						
							| 5 |  | pweq | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  𝒫  𝑥  =  𝒫  ( 𝑦  ∪  { 𝑧 } ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝒫  𝑥  ∈  Fin  ↔  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) ) | 
						
							| 7 |  | pweq | ⊢ ( 𝑥  =  𝐴  →  𝒫  𝑥  =  𝒫  𝐴 ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( 𝒫  𝑥  ∈  Fin  ↔  𝒫  𝐴  ∈  Fin ) ) | 
						
							| 9 |  | pw0 | ⊢ 𝒫  ∅  =  { ∅ } | 
						
							| 10 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 11 | 9 10 | eqeltri | ⊢ 𝒫  ∅  ∈  Fin | 
						
							| 12 |  | eqid | ⊢ ( 𝑐  ∈  𝒫  𝑦  ↦  ( 𝑐  ∪  { 𝑧 } ) )  =  ( 𝑐  ∈  𝒫  𝑦  ↦  ( 𝑐  ∪  { 𝑧 } ) ) | 
						
							| 13 | 12 | pwfilem | ⊢ ( 𝒫  𝑦  ∈  Fin  →  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑦  ∈  Fin  →  ( 𝒫  𝑦  ∈  Fin  →  𝒫  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) ) | 
						
							| 15 | 2 4 6 8 11 14 | findcard2 | ⊢ ( 𝐴  ∈  Fin  →  𝒫  𝐴  ∈  Fin ) | 
						
							| 16 |  | pwfir | ⊢ ( 𝒫  𝐴  ∈  Fin  →  𝐴  ∈  Fin ) | 
						
							| 17 | 15 16 | impbii | ⊢ ( 𝐴  ∈  Fin  ↔  𝒫  𝐴  ∈  Fin ) |