Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) |
2 |
|
pweq |
⊢ ( 𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅ ) |
3 |
2
|
eleq1d |
⊢ ( 𝑚 = ∅ → ( 𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin ) ) |
4 |
|
pweq |
⊢ ( 𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘 ) |
5 |
4
|
eleq1d |
⊢ ( 𝑚 = 𝑘 → ( 𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin ) ) |
6 |
|
pweq |
⊢ ( 𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘 ) |
7 |
|
df-suc |
⊢ suc 𝑘 = ( 𝑘 ∪ { 𝑘 } ) |
8 |
7
|
pweqi |
⊢ 𝒫 suc 𝑘 = 𝒫 ( 𝑘 ∪ { 𝑘 } ) |
9 |
6 8
|
eqtrdi |
⊢ ( 𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 ( 𝑘 ∪ { 𝑘 } ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑚 = suc 𝑘 → ( 𝒫 𝑚 ∈ Fin ↔ 𝒫 ( 𝑘 ∪ { 𝑘 } ) ∈ Fin ) ) |
11 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
12 |
|
df1o2 |
⊢ 1o = { ∅ } |
13 |
11 12
|
eqtr4i |
⊢ 𝒫 ∅ = 1o |
14 |
|
1onn |
⊢ 1o ∈ ω |
15 |
|
ssid |
⊢ 1o ⊆ 1o |
16 |
|
ssnnfi |
⊢ ( ( 1o ∈ ω ∧ 1o ⊆ 1o ) → 1o ∈ Fin ) |
17 |
14 15 16
|
mp2an |
⊢ 1o ∈ Fin |
18 |
13 17
|
eqeltri |
⊢ 𝒫 ∅ ∈ Fin |
19 |
|
eqid |
⊢ ( 𝑐 ∈ 𝒫 𝑘 ↦ ( 𝑐 ∪ { 𝑘 } ) ) = ( 𝑐 ∈ 𝒫 𝑘 ↦ ( 𝑐 ∪ { 𝑘 } ) ) |
20 |
19
|
pwfilem |
⊢ ( 𝒫 𝑘 ∈ Fin → 𝒫 ( 𝑘 ∪ { 𝑘 } ) ∈ Fin ) |
21 |
20
|
a1i |
⊢ ( 𝑘 ∈ ω → ( 𝒫 𝑘 ∈ Fin → 𝒫 ( 𝑘 ∪ { 𝑘 } ) ∈ Fin ) ) |
22 |
3 5 10 18 21
|
finds1 |
⊢ ( 𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin ) |
23 |
|
pwen |
⊢ ( 𝐴 ≈ 𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚 ) |
24 |
|
enfii |
⊢ ( ( 𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚 ) → 𝒫 𝐴 ∈ Fin ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( 𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚 ) → 𝒫 𝐴 ∈ Fin ) |
26 |
25
|
rexlimiva |
⊢ ( ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 → 𝒫 𝐴 ∈ Fin ) |
27 |
1 26
|
sylbi |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin ) |
28 |
|
pwexr |
⊢ ( 𝒫 𝐴 ∈ Fin → 𝐴 ∈ V ) |
29 |
|
canth2g |
⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) |
30 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴 ) |
31 |
28 29 30
|
3syl |
⊢ ( 𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴 ) |
32 |
|
domfi |
⊢ ( ( 𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴 ) → 𝐴 ∈ Fin ) |
33 |
31 32
|
mpdan |
⊢ ( 𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin ) |
34 |
27 33
|
impbii |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |