| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwfilem.1 |
⊢ 𝐹 = ( 𝑐 ∈ 𝒫 𝑏 ↦ ( 𝑐 ∪ { 𝑥 } ) ) |
| 2 |
|
pwundif |
⊢ 𝒫 ( 𝑏 ∪ { 𝑥 } ) = ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) |
| 3 |
1
|
funmpt2 |
⊢ Fun 𝐹 |
| 4 |
|
vex |
⊢ 𝑐 ∈ V |
| 5 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 6 |
4 5
|
unex |
⊢ ( 𝑐 ∪ { 𝑥 } ) ∈ V |
| 7 |
6 1
|
dmmpti |
⊢ dom 𝐹 = 𝒫 𝑏 |
| 8 |
7
|
imaeq2i |
⊢ ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝒫 𝑏 ) |
| 9 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
| 10 |
8 9
|
eqtr3i |
⊢ ( 𝐹 “ 𝒫 𝑏 ) = ran 𝐹 |
| 11 |
|
imafi |
⊢ ( ( Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin ) → ( 𝐹 “ 𝒫 𝑏 ) ∈ Fin ) |
| 12 |
10 11
|
eqeltrrid |
⊢ ( ( Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin ) → ran 𝐹 ∈ Fin ) |
| 13 |
3 12
|
mpan |
⊢ ( 𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin ) |
| 14 |
|
eldifi |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 ∈ 𝒫 ( 𝑏 ∪ { 𝑥 } ) ) |
| 15 |
5
|
elpwun |
⊢ ( 𝑑 ∈ 𝒫 ( 𝑏 ∪ { 𝑥 } ) ↔ ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ) |
| 17 |
|
undif1 |
⊢ ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑑 ∪ { 𝑥 } ) |
| 18 |
|
elpwunsn |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑥 ∈ 𝑑 ) |
| 19 |
18
|
snssd |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → { 𝑥 } ⊆ 𝑑 ) |
| 20 |
|
ssequn2 |
⊢ ( { 𝑥 } ⊆ 𝑑 ↔ ( 𝑑 ∪ { 𝑥 } ) = 𝑑 ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ( 𝑑 ∪ { 𝑥 } ) = 𝑑 ) |
| 22 |
17 21
|
eqtr2id |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
| 23 |
|
uneq1 |
⊢ ( 𝑐 = ( 𝑑 ∖ { 𝑥 } ) → ( 𝑐 ∪ { 𝑥 } ) = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
| 24 |
23
|
rspceeqv |
⊢ ( ( ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ∧ 𝑑 = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) → ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
| 25 |
16 22 24
|
syl2anc |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
| 26 |
1 25 14
|
elrnmptd |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 ∈ ran 𝐹 ) |
| 27 |
26
|
ssriv |
⊢ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ⊆ ran 𝐹 |
| 28 |
|
ssfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ⊆ ran 𝐹 ) → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ) |
| 29 |
13 27 28
|
sylancl |
⊢ ( 𝒫 𝑏 ∈ Fin → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ) |
| 30 |
|
unfi |
⊢ ( ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin ) → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) ∈ Fin ) |
| 31 |
29 30
|
mpancom |
⊢ ( 𝒫 𝑏 ∈ Fin → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) ∈ Fin ) |
| 32 |
2 31
|
eqeltrid |
⊢ ( 𝒫 𝑏 ∈ Fin → 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∈ Fin ) |