Step |
Hyp |
Ref |
Expression |
1 |
|
pwfilemOLD.1 |
⊢ 𝐹 = ( 𝑐 ∈ 𝒫 𝑏 ↦ ( 𝑐 ∪ { 𝑥 } ) ) |
2 |
|
pwundif |
⊢ 𝒫 ( 𝑏 ∪ { 𝑥 } ) = ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) |
3 |
|
vex |
⊢ 𝑐 ∈ V |
4 |
|
snex |
⊢ { 𝑥 } ∈ V |
5 |
3 4
|
unex |
⊢ ( 𝑐 ∪ { 𝑥 } ) ∈ V |
6 |
5 1
|
fnmpti |
⊢ 𝐹 Fn 𝒫 𝑏 |
7 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝒫 𝑏 ↔ 𝐹 : 𝒫 𝑏 –onto→ ran 𝐹 ) |
8 |
6 7
|
mpbi |
⊢ 𝐹 : 𝒫 𝑏 –onto→ ran 𝐹 |
9 |
|
fodomfi |
⊢ ( ( 𝒫 𝑏 ∈ Fin ∧ 𝐹 : 𝒫 𝑏 –onto→ ran 𝐹 ) → ran 𝐹 ≼ 𝒫 𝑏 ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝒫 𝑏 ∈ Fin → ran 𝐹 ≼ 𝒫 𝑏 ) |
11 |
|
domfi |
⊢ ( ( 𝒫 𝑏 ∈ Fin ∧ ran 𝐹 ≼ 𝒫 𝑏 ) → ran 𝐹 ∈ Fin ) |
12 |
10 11
|
mpdan |
⊢ ( 𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin ) |
13 |
|
eldifi |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 ∈ 𝒫 ( 𝑏 ∪ { 𝑥 } ) ) |
14 |
4
|
elpwun |
⊢ ( 𝑑 ∈ 𝒫 ( 𝑏 ∪ { 𝑥 } ) ↔ ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ) |
15 |
13 14
|
sylib |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ) |
16 |
|
undif1 |
⊢ ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑑 ∪ { 𝑥 } ) |
17 |
|
elpwunsn |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑥 ∈ 𝑑 ) |
18 |
17
|
snssd |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → { 𝑥 } ⊆ 𝑑 ) |
19 |
|
ssequn2 |
⊢ ( { 𝑥 } ⊆ 𝑑 ↔ ( 𝑑 ∪ { 𝑥 } ) = 𝑑 ) |
20 |
18 19
|
sylib |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ( 𝑑 ∪ { 𝑥 } ) = 𝑑 ) |
21 |
16 20
|
eqtr2id |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
22 |
|
uneq1 |
⊢ ( 𝑐 = ( 𝑑 ∖ { 𝑥 } ) → ( 𝑐 ∪ { 𝑥 } ) = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
23 |
22
|
rspceeqv |
⊢ ( ( ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ∧ 𝑑 = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) → ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
24 |
15 21 23
|
syl2anc |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
25 |
1 5
|
elrnmpti |
⊢ ( 𝑑 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 ∈ ran 𝐹 ) |
27 |
26
|
ssriv |
⊢ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ⊆ ran 𝐹 |
28 |
|
ssdomg |
⊢ ( ran 𝐹 ∈ Fin → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ⊆ ran 𝐹 → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ≼ ran 𝐹 ) ) |
29 |
12 27 28
|
mpisyl |
⊢ ( 𝒫 𝑏 ∈ Fin → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ≼ ran 𝐹 ) |
30 |
|
domfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ≼ ran 𝐹 ) → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ) |
31 |
12 29 30
|
syl2anc |
⊢ ( 𝒫 𝑏 ∈ Fin → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ) |
32 |
|
unfi |
⊢ ( ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin ) → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) ∈ Fin ) |
33 |
31 32
|
mpancom |
⊢ ( 𝒫 𝑏 ∈ Fin → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) ∈ Fin ) |
34 |
2 33
|
eqeltrid |
⊢ ( 𝒫 𝑏 ∈ Fin → 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∈ Fin ) |