Metamath Proof Explorer


Theorem pwfir

Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024)

Ref Expression
Assertion pwfir ( 𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin )

Proof

Step Hyp Ref Expression
1 df-ima ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } “ 𝒫 𝐵 ) = ran ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ↾ 𝒫 𝐵 )
2 relopab Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) }
3 dmopabss dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ⊆ 𝒫 𝐵
4 relssres ( ( Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ∧ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ⊆ 𝒫 𝐵 ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ↾ 𝒫 𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } )
5 2 3 4 mp2an ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ↾ 𝒫 𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) }
6 5 rneqi ran ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ↾ 𝒫 𝐵 ) = ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) }
7 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) }
8 eleq1 ( { 𝑦 } = 𝑥 → ( { 𝑦 } ∈ 𝒫 𝐵𝑥 ∈ 𝒫 𝐵 ) )
9 8 biimparc ( ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) → { 𝑦 } ∈ 𝒫 𝐵 )
10 vex 𝑦 ∈ V
11 10 snelpw ( 𝑦𝐵 ↔ { 𝑦 } ∈ 𝒫 𝐵 )
12 9 11 sylibr ( ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) → 𝑦𝐵 )
13 12 exlimiv ( ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) → 𝑦𝐵 )
14 snelpwi ( 𝑦𝐵 → { 𝑦 } ∈ 𝒫 𝐵 )
15 eqid { 𝑦 } = { 𝑦 }
16 eqeq2 ( 𝑥 = { 𝑦 } → ( { 𝑦 } = 𝑥 ↔ { 𝑦 } = { 𝑦 } ) )
17 16 rspcev ( ( { 𝑦 } ∈ 𝒫 𝐵 ∧ { 𝑦 } = { 𝑦 } ) → ∃ 𝑥 ∈ 𝒫 𝐵 { 𝑦 } = 𝑥 )
18 14 15 17 sylancl ( 𝑦𝐵 → ∃ 𝑥 ∈ 𝒫 𝐵 { 𝑦 } = 𝑥 )
19 df-rex ( ∃ 𝑥 ∈ 𝒫 𝐵 { 𝑦 } = 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) )
20 18 19 sylib ( 𝑦𝐵 → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) )
21 13 20 impbii ( ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) ↔ 𝑦𝐵 )
22 21 abbii { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } = { 𝑦𝑦𝐵 }
23 abid2 { 𝑦𝑦𝐵 } = 𝐵
24 7 22 23 3eqtri ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } = 𝐵
25 1 6 24 3eqtri ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } “ 𝒫 𝐵 ) = 𝐵
26 funopab ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) )
27 mosneq ∃* 𝑦 { 𝑦 } = 𝑥
28 27 moani ∃* 𝑦 ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 )
29 26 28 mpgbir Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) }
30 imafi ( ( Fun { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } ∧ 𝒫 𝐵 ∈ Fin ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } “ 𝒫 𝐵 ) ∈ Fin )
31 29 30 mpan ( 𝒫 𝐵 ∈ Fin → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ 𝒫 𝐵 ∧ { 𝑦 } = 𝑥 ) } “ 𝒫 𝐵 ) ∈ Fin )
32 25 31 eqeltrrid ( 𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin )