Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseqlem4.g |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
2 |
|
pwfseqlem4.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
3 |
|
pwfseqlem4.h |
⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) |
4 |
|
pwfseqlem4.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) |
5 |
|
pwfseqlem4.k |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
6 |
|
pwfseqlem4.d |
⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
8 |
|
f1f |
⊢ ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → 𝐺 : 𝒫 𝐴 ⟶ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝒫 𝐴 ⟶ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
10 |
|
ssrab2 |
⊢ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ⊆ 𝑥 |
11 |
|
simprl1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) |
12 |
4 11
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ⊆ 𝐴 ) |
13 |
10 12
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ⊆ 𝐴 ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
14
|
rabex |
⊢ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ V |
16 |
15
|
elpw |
⊢ ( { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ↔ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ⊆ 𝐴 ) |
17 |
13 16
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ) |
18 |
9 17
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
19 |
6 18
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
20 |
|
pm5.19 |
⊢ ¬ ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
21 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
22 |
|
f1f |
⊢ ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ⟶ 𝑥 ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ⟶ 𝑥 ) |
24 |
|
ffvelrn |
⊢ ( ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ⟶ 𝑥 ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ) |
25 |
23 24
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ) |
26 |
|
f1f1orn |
⊢ ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1-onto→ ran 𝐾 ) |
27 |
21 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1-onto→ ran 𝐾 ) |
28 |
|
f1ocnvfv1 |
⊢ ( ( 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1-onto→ ran 𝐾 ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = 𝐷 ) |
29 |
27 28
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = 𝐷 ) |
30 |
|
f1fn |
⊢ ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → 𝐺 Fn 𝒫 𝐴 ) |
31 |
7 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 Fn 𝒫 𝐴 ) |
32 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn 𝒫 𝐴 ∧ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ) → ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ∈ ran 𝐺 ) |
33 |
31 17 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ∈ ran 𝐺 ) |
34 |
6 33
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ran 𝐺 ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → 𝐷 ∈ ran 𝐺 ) |
36 |
29 35
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) |
37 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ◡ 𝐾 ‘ 𝑦 ) = ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ↔ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) ) |
39 |
|
id |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → 𝑦 = ( 𝐾 ‘ 𝐷 ) ) |
40 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) = ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) |
41 |
39 40
|
eleq12d |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ↔ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
42 |
41
|
notbid |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
43 |
38 42
|
anbi12d |
⊢ ( 𝑦 = ( 𝐾 ‘ 𝐷 ) → ( ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ↔ ( ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) ) |
44 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( ◡ 𝐾 ‘ 𝑤 ) = ( ◡ 𝐾 ‘ 𝑦 ) ) |
45 |
44
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ↔ ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ) ) |
46 |
|
id |
⊢ ( 𝑤 = 𝑦 → 𝑤 = 𝑦 ) |
47 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑦 → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) = ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) |
48 |
46 47
|
eleq12d |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ↔ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ) |
49 |
48
|
notbid |
⊢ ( 𝑤 = 𝑦 → ( ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ↔ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ) |
50 |
45 49
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) ↔ ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) ) ) |
51 |
50
|
cbvrabv |
⊢ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } = { 𝑦 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑦 ) ∈ ran 𝐺 ∧ ¬ 𝑦 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑦 ) ) ) } |
52 |
43 51
|
elrab2 |
⊢ ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) ) |
53 |
|
anass |
⊢ ( ( ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ↔ ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) ) |
54 |
52 53
|
bitr4i |
⊢ ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ( ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) ∧ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
55 |
54
|
baib |
⊢ ( ( ( 𝐾 ‘ 𝐷 ) ∈ 𝑥 ∧ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ∈ ran 𝐺 ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
56 |
25 36 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ) ) |
57 |
29 6
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
58 |
57
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) = ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) ) |
59 |
|
f1f1orn |
⊢ ( 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → 𝐺 : 𝒫 𝐴 –1-1-onto→ ran 𝐺 ) |
60 |
7 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : 𝒫 𝐴 –1-1-onto→ ran 𝐺 ) |
61 |
|
f1ocnvfv1 |
⊢ ( ( 𝐺 : 𝒫 𝐴 –1-1-onto→ ran 𝐺 ∧ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ∈ 𝒫 𝐴 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
62 |
60 17 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐺 ‘ ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
64 |
58 63
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) = { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
65 |
64
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ↔ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
66 |
65
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ¬ ( 𝐾 ‘ 𝐷 ) ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ ( 𝐾 ‘ 𝐷 ) ) ) ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
67 |
56 66
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) |
68 |
67
|
ex |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) → ( ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ↔ ¬ ( 𝐾 ‘ 𝐷 ) ∈ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) ) ) |
69 |
20 68
|
mtoi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
70 |
19 69
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |